跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林維崙
Wei-Lun Lin
論文名稱: 可適性正交多工調變系統
Adaptive orthogonally multiplexed modulation systems
指導教授: 鐘嘉德
Char-Dir Chung
魏瑞益
Ray-Yi Wei
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 96
語文別: 英文
論文頁數: 108
中文關鍵詞: 可適性調變正交多工調變
外文關鍵詞: orthogonally multiplexed modulation, Adaptive modulation
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為可適性調變技術採用了未編碼的正交多工調變信號於
    瑞雷通道的研究。論文中提出了一個調變選擇法則,以便於正交多工
    調變家族中挑選最適合通道且最具頻寬效益的調變。相較於傳統系
    統,同調與差分同調的定功率可適性正交多工調變系統都展現出優異
    的平均頻譜效益。此外,本論文所提之可適性正交多工調變系統搭載
    了調變對應器與解對應器後,只需花費些微的運算量,便可以實現於
    傳統的正交分頻多工系統之上。更進一步,本論文也探討了可適性正
    交多工調變結合了前導信號調變在平緩衰落與時擇通道中的系統。其
    中,兩種前導信號的信號格式的頻譜性能也在論文中加以分析。基於
    此系統,本論文也分析了通道估測錯誤對於在結合了前導信號調變的
    可適性正交多工調變系統所造成的影響,並提供估測錯誤與系統頻譜
    效能之間的結果分析。


    Adaptive transmission technique adopting uncoded orthogonally multiplexed modulation
    (OMM) signals is studied for flat Rayleigh fading channel. A modulation selection rule is
    proposed to choose spectrally efficient OMM signals in accordance with channel status. Both
    coherent and differentially coherent constant-power adaptive OMM (AOMM) systems are shown
    to significantly outperform the conventional constant-power adaptive modulation systems in average
    spectral efficiency. Additionally, the considered adaptive OMM systems with modulation
    mappers and demapping algorithms can be directly implemented over orthogonal frequency division
    multplexing based system structure with marginally additional implementation complexity.
    Furthermore, the pilot-symbol-assisted (PSA) AOMM systems are studied under frequency flatfaded
    channel with time selectivity. The spectral performance of two pilot patterns are analyzed.
    The impact over spectral performance caused by the estimation error is also examined for the
    PSA-AOMM systems.

    ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii I INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 AdaptiveModulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The Orthogonally Multiplexed Modulation Families . . . . . . . . . . . . . . . . 3 1.2.1 The OMOAMFamily . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 The OMOPMFamily . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 The OMO2AM and OMO2PMFamilies . . . . . . . . . . . . . . . . . . . 7 1.3 Motivations of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 II ADAPTIVE ORTHOGONALLY MULTIPLEXEDMODULATION SYSTEM SETUP AND PERFORMANCE EVALUATION UNDER PERFECT CHANNEL ESTIMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Adaptation Scheme and System Parameters . . . . . . . . . . . . . . . . . . . . 15 2.2.1 The OMMFamilies and Elements . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Adaptation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 III ADAPTIVE ORTHOGONALLY MULTIPLEXED ORTHOGONAL AMPLITUDE MODULATION / ADAPTIVE ORTHOGONALLYMULTIPLEXED ORTHOGONAL PHASE MODULATION SYSTEMS . . . . . . . . . . . . . 24 3.1 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 Power and Spectral Efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 IV ADAPTIVE ORTHOGONALLY MULTIPLEXED ON-OFF KEYED MODULATION SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.1 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2 Power and Spectral Efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3.1 Results for AOMO2AM and AOMO2PM . . . . . . . . . . . . . . . . . . 45 4.3.2 Results for AOMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 V ADAPTIVE DIFFERENTIALLY COHERENT ORTHOGONALLY MULTIPLEXED ORTHOGONAL PHASE MODULATION SYSTEMS . . . . . 57 5.1 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.2 Power and Spectral Efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 VI PILOT-SYMBOL-ASSISTED ADAPTIVE ORTHOGONALLY MULTIPLEXED MODULATION SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.1 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.2 The Pilot Signal and Channel Status Estimator . . . . . . . . . . . . . . . . . . 76 6.3 The Spectral Efficiencies of the Pilot-Symbol-Assisted OMM Signals . . . . . . 80 6.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 VII CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 APPENDIX A – DERIVATION OF THE INTEGRATION OF SQUARED SINC FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 APPENDIX B – DERIVATION OF THE CORRELATION COEFFICIENT100 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 PUBLICATION LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

    [1] A.J. Goldsmith and S. Chua, "Variable-rate variable-power MQAM for fading channels,"
    IEEE Trans. Commun., vol. 45, pp. 1218—1230, Oct. 1997.
    [2] IEEE, Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband
    Wireless Access Systems, IEEE Std. 802.16-2005, 2005.
    [3] ETSI, Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Physical (PHY)
    layer, ETSI Std. TS 101 475 V1.3.1, Dec. 2001.
    [4] J.F. Hayes, "Adaptive feedback communications," IEEE Trans. Commun. Technol., vol.
    COM-16, pp. 29—34, Feb. 1968.
    [5] W.T. Webb and R. Steele, "Variable rate QAM for mobile radio," IEEE Trans. Commun.,
    vol. 43, pp. 2223—2230, July 1995.
    [6] A.J. Goldsmith and P. Varaiya, "Capacity of fading channels with channel side information,"
    IEEE Trans. Inform. Theory, vol. 43, pp. 1986—1992, Nov. 1997.
    [7] F.F. Digham and M.-S. Alouini, "Variable-rate noncoherent M-FSK modulation for power
    limited systems over Nakagami channels," IEEE Trans. Wireless Commun., vol. 3, pp.
    1295—1304, July 2004.
    [8] T. Javornik and G. Kandus, "N-MSK adaptive modulation techniques in a slow Rayleigh
    fading channel," in Proc. IEEE Personal, Indoor and Mobile Radio Communications
    (PIMRC’00), London, UK, Sep. 2000, pp. 138—142.
    [9] A.J. Goldsmith and S. Chua, "Adaptive coded modulation for fading channels," IEEE
    Trans. Commun., vol. 46, pp. 595—602, May 1998.
    [10] S.T. Chung and A.J. Goldsmith, "Degrees of freedom in adaptive modulation: A unified
    view," IEEE Trans. Commun., vol. 49, pp. 1561—1571, Sep. 2001.
    [11] T. Ue, S. Sampei, and N. Morinaga, "Symbol rate and modulation level controlled adaptive
    modulation/TDMA/TDD for personal communication systems," in Proc. IEEE Vehicular
    Technology Conf. (VTC’95), July 1995, pp. 306—310.
    [12] Z. Zhou, B. Vucetic, M. Dohler, Y. Li, "MIMO systems with adaptive modulation," IEEE
    Trans. Veh. Technol., vol. 54, pp. 1828—1842, Sep. 2005.
    [13] L. Lin, R.D. Yates, and P. Spasojevic, "Adaptive transmission with finite code rates," IEEE
    Trans. Inform. Theory, vol. 52, pp. ,1847—1860, May 2006.
    [14] T. Keller and L. Hanzo, "Adaptive modulation techniques for duplex OFDM transmission,"
    IEEE Trans. Veh. Technol., vol. 49, pp. 1893—1906, Sep. 2000.
    [15] B. Choi and L. Hanzo, "Optimum mode-switching-assisted constant power single- and multicarrier
    adaptive modulation," IEEE Trans. Veh. Technol., vol. 52, pp. 536—560, May
    2003.
    [16] B. Canpolat and Y. Tanik, "Performance analysis of adaptive loading OFDM under
    Rayleigh fading," IEEE Trans. Veh. Technol., vol. 53, pp. 1105—1115, July 2004.
    [17] S. Ye, R.S. Blum, and L.J.Jr. Cimini, "Adaptive modulation for variable rate OFDM systems
    with imperfect channel information," in Proc. IEEE Vehicular Technology Conf.,
    Birmingham, AL, May 2002, pp. 767-771.
    [18] M. Mohammad and R.M. Buehrer, "On the impact of SNR estimation error on adaptive
    modulation," IEEE Commun. Lett., vol. 9, pp. 490—492, June 2005.
    [19] J.F. Paris, M.C. Aguayo-Torres, J.T. Entrambasaguas, "Impact of channel estimation error
    on adaptive modulation performance in flat fading", IEEE Trans. on Commun., vol. 52,
    pp. 716—720, May 2004.
    [20] M.-S. Alouini and A.J. Goldsmith, "Adaptive modulation over Nakagami fading channels,"
    Wireless Pers. Commun., vol. 13, pp. 119—143, May 2000.
    [21] A. J. Goldsmith, L. Greenstein, and G. Foschini, "Error statistics of real-time power measurements
    in cellular channels with multipath and shadowing," IEEE Trans. Veh. Technol.,
    vol. 43, pp. 439—446, Aug. 1994.
    [22] X. Tang, M.-S. Alouini, and A. J. Goldsmith, "Effect of channel estimation error on MQAM
    BER performance in Rayleigh fading," IEEE Trans. Veh. Technol., vol. 47, pp.
    1856—1864, Dec. 1999.
    [23] J.K. Cavers, "An analysis of pilot symbol assisted modulation for Rayleigh-fading channels,"
    IEEE Trans. Veh. Technol., vol. 40, pp. 686—693, Nov. 1991.
    [24] I.S. Reed and R.A. Scholtz, "N-orthogonal phase-modulated codes," IEEE Trans. Inform.
    Theory, vol. 12, pp. 388—395, July 1966.
    [25] A.J. Viterbi and J.I. Stiffler, "Performance of N-orthogonal codes," IEEE Trans. Inform.
    Theory, vol. IT-13, pp. 521-522, July 1967.
    [26] W.C. Lindsey and M.K. Simon, Telecommunication Systems Engineering. Englewood Cliffs,
    N.J.: Prentice Hall, 1973.
    [27] R. Padovani and J.K. Wolf, "Coded phase/frequency modulation," IEEE Trans. Commun.,
    vol. COM-34, pp. 446-453, May 1986.
    [28] S.S. Periyalwar and S.M. Fleisher, "Multiple trellis coded frequency and phase modulation,"
    IEEE Trans. Commun., vol. COM-40, pp. 1038-1046, June 1992.
    [29] R.W. Chang, "Synthesis of band-limited orthogonal signals for multi-channel data transmission,"
    Bell Syst. Tech. J., vol. 45, pp. 1775-1796, Dec. 1966.
    [30] S.B. Weinstein and P.M. Ebert, "Data transmission by frequency-division multiplexing
    using the discrete Fourier transform," IEEE Trans. Commun. Technol., vol. COM-19,
    pp. 628-634, Oct. 1971.
    [31] L.J. Cimini, "Analysis and simulation of a digital mobile channel using orthogonal frequency
    division multiplexing," IEEE Trans. Commun., vol. COM-33, pp. 665-675, July 1985.
    [32] J.A.C. Bingham, "Multicarrier modulation for data transmission: An idea whose time has
    come," IEEE Commun. Mag., vol. 28, pp. 5-14, May 1990.
    [33] S.M. Fleisher and S. Qu, "Quadrature frequency/phase modulation," IEEE Trans. Commun.,
    vol. COM-43, pp. 1513-1524, Feb./Mar./Apr. 1995.
    [34] S.S. Periyalwar and S. M. Fleisher, "Trellis coding of Quadrature frequency/phase modulated
    signals," IEEE J. Select. Areas Commun., vol. SAC-10, pp. 1254-1263, Oct. 1992.
    [35] M.K. Simon, S.M. Hinedi and W.C. Lindsey, Digital Communication Techniques: Signal
    Design and Detection. Englewood Cliffs, N.J.: Prentice Hall, 1995.
    [36] C.-D. Chung, "Differential detection of quadrature frequency/phase modulated signals,"
    IEEE Trans. Commun., vol. COM-47, pp. 546-557, Apr. 1999.
    [37] D. Saha and T.G. Birdsall, "Quadrature-quadrature phase shift keying," IEEE Trans. Commun.,
    vol. COM-37, pp. 437-448, May 1989.
    [38] D. Saha, "Channel coding with quadrature-quadrature phase shift keying (Q2PSK) signals,"
    IEEE Trans. Commun., vol. COM-38, pp. 409-417, Apr. 1990.
    [39] C. D. Chung, "Orthogonally multiplexed orthogonal amplitude modulation family," IEEE
    Trans. Commun., vol. 50, pp. 415—428, Mar. 2002.
    [40] ––, "Coherent and differentially coherent detections of orthogonally multiplexed orthogonal
    phase-modulated signals," IEEE Trans. Commun., vol. 51, pp. 428—440, Mar. 2003.
    [41] C. D. Chung and H. S. Liaw, "Orthogonally multiplexed on-off-keyed amplitude and phase
    modulation families," IEEE Trans. Wireless Commun., vol. 4, pp. 288—299, Jan. 2005.
    [42] D. Divsalar and M.K. Simon, "Multiple-symbol differential detection of M-DPSK," IEEE
    Trans. Commun., vol. COM-38, pp. 300-308, May 1990.
    [43] C.D. Chung and F.C. Hung, "Noncoherent maximum-likelihood block detection of orthogonal
    NFSK/LDPSK signals," IEEE Trans. Veh. Technol., vol. VT-51, pp. 283-292, Mar.
    2002.
    [44] O.M. El-Chandor and D. Saha, "Differential detection in quadrature-quadrature phase shift
    keying (Q2PSK) systems," IEEE Trans. Commun., vol. COM-39, pp. 703-712, May
    1991.
    [45] L. Wei and I. Korn, "Combined frequency and differential phase shift keying with noncoherent
    detection in a satellite mobile channel," IEEE Trans. Veh. Technol., vol. VT-44,
    pp. 603-612, Aug. 1995.
    [46] I. Korn and L. Wei, "Q2PSK in the satellite mobile channel with ISI and ICI," IEEE Trans.
    Veh. Technol., vol.VT-43, pp. 69-78, Feb. 1994.
    [47] S.H. Kim and S.W. Kim, "Frequency-hopped multi-access communications with multicarrier
    on-off keying in Rayleigh fading channels," IEEE Trans. Commun., vol. 48, pp.
    1692-1701, Oct. 2000.
    [48] R. Petrovic,W. Roehr and D.W. Cameron, "Multicarrier modulation for narrowband PCS,"
    IEEE Trans. Veh. Technol., vol. 43, pp. 856-862, Nov. 1994.
    [49] B. Muquet, Z. Wang, G.B. Giannakis, M. de Courville, and P. Duhamel, "Cyclic prefixing
    or zero padding for wireless multicarrier transmissions?" IEEE Trans. Commun., vol.
    50, pp. 2136-2148, Dec. 2002.
    [50] J.G. Proakis, Digital Communications, 4th ed. New York: McGraw-Hill, 2001.
    [51] W.C.Y. Lee, Mobile Communications Engineering, 2nd ed. New York: McGraw-Hill, 1982.
    [52] M.K. Simon and M.-S. Alouini, Digital Communications Over Generalized Fading Channels:
    A Unified Approach to Performance Analysis. New York: Wiley, 2000.
    [53] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C,
    2nd ed. Cambridge, U.K., 1997.
    [54] M. Chiani and D. Dardari, "Improved exponential bounds and approximation for the Qfunction
    with application to average error probability computation," in Proc. IEEE
    Global Telecommunications Conf. (GLOBECOM’02), Taipei, Taiwan, Nov. 2002, pp.
    1399—1402.

    QR CODE
    :::