| 研究生: |
劉啟鑫 Qi-Xin Liu |
|---|---|
| 論文名稱: |
深紫外發光二極體光熱特性模擬及優化之研究 Opticalthermal simulation and performance optimization of UVCLED |
| 指導教授: |
韋安琪
An-Chi Wei |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 深紫外發光二極體 、能量轉化比例 、光熱優化模擬 、光取出效率 、熱分布 |
| 外文關鍵詞: | UVCLED, energy conversion ratio, photothermal optimization simulation, light extraction efficiency, heat distribution |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
相較於傳統紫外汞燈,深紫外發光二極體(Deep ultraviolet light emitting diode,DUVLED,亦稱作UVCLED)不僅輻照强度高、響應速度快、壽命長、殺菌效率高等諸多優點,且無異味、無二次污染,更是對人體和環境具有明顯優勢。然而目前UVCLED外量子效率(External quantum efficiency,EQE)仍然偏低,商業化UVCLED產品EQE普遍在5%左右,其餘大量轉換成熱。
本文利用光學基本理論提出一種改良方式,對市場現有產品進行改良。於模擬軟體中建構模型,模擬並驗證該優化設計對出光和散熱性能的提升效果,並改善現有產品封裝結構,以達出光提升和壽命延長。
本研究主要分爲光學設計優化和熱學模擬及驗證兩個部分:光學設計部分為現有產品光學效率分析、LightTools光學模型架構、並設計光學優化方案,其中包括:1.對基板厚度優化;2.晶片塑形之優化蝕刻溝槽,並探討溝槽深度及層數對光取出效率之影響;3.晶片底面鋁反射對出光影響;4.添加折射率介於空氣與基板間之中間折射率材料;5.最後將反光杯匯入LightTools進行光學優化模擬,並對光學性能提升進行分析;其次是熱學模擬部分,主要分爲現有產品COMSOL熱傳模型架構、模擬驗證光學方案對散熱性能之影響、實驗量測數據進行收集分析,並以實際值修正模擬值,驗證模擬之正確性。晶片之光取出效率最高可由18.5%提升至38.0%,最高溫度由50.7℃降低至42.7℃。
關鍵字:UVCLED光熱優化模擬、光取出效率、熱分布、能量轉化比例
Abstract
Compared with traditional ultraviolet lamps, deep ultraviolet light-emitting diodes (UVCLED) have high intensity of light distribution, fast responsiveness speed, longer lifetime, high sterilization efficiency. Besides, there is no secondary pollution has been found for the environment which can play an important part in human life. However, external quantum efficiency (external quantum efficiency, EQE) of the current UVCLED is still at a lower level. The EQE of the product of commercial UVCLED is generally around 5%, and the rest of the energy is converted into heat which is a great loss for the energy.
This thesis uses the basic theory of optics to propose a method to improve the existing product in the market. A model had been constructed in the simulation software to simulate and verify the improvement effort of the optimized design for the output of the light and the performance of the heat dissipation. The constructed model for the simulation can improve the output of the light and extend the lifetime of the product by changing the structure of the product in the market.
This study is divided into two main parts: Optimization of optical design and thermal simulation and verification. The part of optical design combine as following parts: 1. The improvement of the thickness of the substrate. 2. The optimization about etching grooves for wafer shaping, and discussing the influence of the efficiency of light extraction. 3. The influence of aluminum reflection on the bottom surface of the chip for light extraction. 4. Add a material which refractive index is between air and the the substrate. 5. Import a reflective cup which can improve the efficiency of the output of the light. The thermal simulation and verification part, which is mainly about the heat transfer model in COMSOL for the products which existed in the market, uses the heat transfer model framework in COMSOL to simulate and verify the influence of the optical design for the thermal dissipation performance. To verify the correctness of the thermal simulation, we measure the percentage of the output of the light from the commercial UVCLED. The efficiency of light extraction of the chip can be raise from 18.5% to 38%, and the highest temperature will be lowered from 50.7℃ to 42.7℃.
Keywords: UVCLED photothermal optimization simulation, light extraction efficiency, heat distribution, energy conversion ratio
參考文獻
[1]黃莘閎,「有機發光二極體之軟性基板散熱設計及壽命改善之研究」,國立中央大學,碩士論文,民國 108 年。
[2]王佳乐,「深紫外LED的前景及市场应用价值探究」,现代信息科技,3(8), 57-58頁,(2019)。
[3]张翔,「浅析深紫外 LED 的前景与市场应用价值」, 价值工程, 33, (2018)。
[4]林岳、陈华山、陈灿和,「深紫外发光二极管研究进展及其在杀菌消毒中的应用」, 厦门大学学报 (自然科学版) ,59(3), 360-372頁,(2020)。
[5]Y. Guo, et al, “Light extraction enhancement of AlGaN-based ultraviolet light-emitting diodes by substrate sidewall roughening”, Applied Physics Letters, 111(1), 011102, (2017).
[6]田康凯等,「AlGaN基深紫外发光二极管空穴注入效率的提高途径」,激光与光电子学进展, 56(6), (2019)。
[7]M. Kneissl, et al, “The emergence and prospects of deep-ultraviolet light-emitting diode technologies”, Nature Photonics, 13(4), (2019).
[8]郭浩中等,LED 原理與應用,P 177~180,五南出版公司,民國 98 年。
[9]M.H. Kim, et al, “Origin of efficiency droop in GaN-based light-emitting diodes”, Applied Physics Letters, 91(18), 183507, (2007).
[10]J. Han, et al, “AlGaN/GaN quantum well ultraviolet light emitting diodes”, Applied physics letters, 73(12), 1688-1690, (1998).
[11]Y. Taniyasu, M. Kasu., & T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres”, Nature, 441(7091), 325-328, (2006).
[12]M. Kneissl, et al, “The emergence and prospects of deep-ultraviolet light-emitting diode technologies”, Nature Photonics, 13(4), 233-244, (2019).
[13]T. Takano, et al, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency”, Applied Physics Express, 10(3), 031002, (2017) .
[14]H. Hirayama, et al, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes”, Japanese Journal of Applied Physics, 53(10), 100209, (2014).
[15]H. Yoshida, et al, “Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode”, Applied Physics Letters, 93(24), 241106, (2008).
[16] L. Zhang, et al, “Deep ultraviolet light-emitting diodes based on a well-ordered AlGaN nanorod array”, Photonics Research, 7(9), B66-B72, (2019).
[17]秦典成等,「阳极氧化铝基板的制备及在led散热领域的应用」,人工晶体学报,231(01), 225-230 頁,(2018)。
[18]窦林平,「2016中国LED照明行业趋势展望」,照明工程学报,027(001), Ⅰ-Ⅲ,2016。
[19]童敏、邵嘉平,「照明用LED芯片与封装器件发展概述」, 照明工程学报,28(4), 130-133頁,(2017)。
[20]R. Xie and D. Li, “Research on the curing performance of UV-LED light based stereolithography”, Optics & Laser Technology, 44(4), 1163-1171, 2012.
[21]on line resources︰“科普中国”发光二极管 。
取自https://baike.baidu.com/item/%E5%8F%91%E5%85%89%E4%BA%8C%E6%9 E%81%E7%AE%A1
[22]L. Wang, et al, “A review on experimental measurements for understanding efficiency droop in InGaN-based light-emitting diodes”, Materials, 10(11), 1233, (2017).
[23]李宗憲,「氮化鎵發光二極體之光萃取效率分析與晶片設計」,國立中央大學,博士論文,民國 97 年。
[24]R. Ishii, et al, “Temperature-dependent electroluminescence study on 265-nm AlGaN-based deep-ultraviolet light-emitting diodes grown on AlN substrates”, AIP Advances, 10(12), 125014, (2020).
[25]田康凯等,「Algan基深紫外发光二极管空穴注入效率的提高途径」,激光与光电子学进展,56(006), 1-15頁,(2019)。
[26]陳朝旻,「紫外光發光二極體製程技術與元件特性研究」,國立中央大學,碩士論文,民國 95 年。
[27]E. Hecht, Optics, 4th edition, Addison Wesley, P.149-170, 2002.
[28]R. Meerheim, B. Lussem, K. Leo, “Efficiency and stability of p-i-n type organic light emitting diodes for display and lighting applications”, Proceedings of the IEEE, 97, 1606-1626, (2009).
[29]M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, Elsevier, 2013.
[30]E. Hecht and Z. Alfred, Optics, 4th edition, Addison Wesley, P.120, 2002.
[31]毛德丰等,「功率led热特性分析」,照明工程学报,(2), 30-34頁,(2009)。
[32]Z. Ma, et al, “Degradation and failure mechanism of AlGaN-based UVC-LEDs”, Solid-State Electronics, 156, 92-96, 2019.
[33]M.Y. Tsai, et al, “Thermal analyses of led light bars and backlight modules”, JOURNAL OF MECHANICS,33(3), 1-9, 2016.
[34]王匀等,「基于热管风冷的大功率 UV-LED 固化灯散热研究」,照明工程学报,31(1), 40-46頁,2020。
[35]李广,「基于光电热理论的多LED光源热耦合效应分析与建模」,杭州电子科技大学,硕士论文,2019 年。
[36]M.J. MORAN, et al, Introduction to thermal systems engineering: thermodynamics, fluid mechanics, and heat transfer., John Wiley & Sons, 2002.
[37]黃瀚毅,「有機發光二極體熱特性模擬研究」,國立中央大學,碩士論文,民國 105 年。
[38]A.C. Wei, et al, “Integration of optical and thermal models for organic light-emitting diodes”, Electronics, 8(1), 17, 2019.
[39]P. Schwamb, T.C.G. Reusch, C.J. Brabec, “Passive cooling of large-area organic light-emitting diodes,”Org. Electron, 14(8), 1939-1945, 2013.
[40]王亚男,「采用光子晶体技术提高 LED 光取出效率的研究」,燕山大学,硕士论文,2010 年。
[41]陳明權,「藍光發光二極體不同量子阱厚度的內部量子效率之研究」,國立交通大學,博士論文,民國 98 年。
[42] H. HIRAYAMA, et al, “222–282 nm AlGaN and InAlGaN‐based deep‐UV LEDs fabricated on high‐quality AlN on sapphire”, Physica Status Solidi (a), 206(6), 1176-1182, 2009.
[43]劉文獻,「提升P型Al0. 5Ga0. 5N歐姆接觸電極的導電性及反射率」,國立中央大學,碩士論文,民國 107 年。
[44]Y. LIU, et al, “Composition and temperature dependent optical properties of AlxGa1-xN alloy by spectroscopic ellipsometry”, Applied Surface Science, 421, 389-396, 2017.
[45]H.Y. RYU, et al, “Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes”, Applied Physics Express, 6(6), 062101, 2013.
[46]王安生,「AlGaN 基深紫外倒装 LED 光取出效率的研究」,南京大学,硕士论文,2019年。
[47]on line resources︰Refractive index of Al2O3.
取自:https://refractiveindex.info/?shelf=main&book=Al2O3&page=Malitson-o
[48]on line resources︰薄膜厚度测量中Al2O3的折射率。
取自:https://filmetrics.cn
[49]J. ENGELBRECHT, et al, “An alternative method to determine the refractive index of AlxGa1−xN”, Physica B: Condensed Matter, 480, 181-185, 2016.
[50]K. B. Nam, et al, “Unique optical properties of AlGaN alloys and related ultraviolet emitters”, Applied Physics Letters, 84(25), 5264-5266, 2004.
[51]T. Kolbe, et al, “Optical polarization characteristics of ultraviolet (In)(Al) GaN multiple quantum well light emitting diodes”, Applied Physics Letters, 97(17), 171105, 2010.
[52]on line resources︰Department of Physics, Northeastern Universvity.
取自:http://www.northeastern.edu/afeiguin/phys5870/phys5870/node71.htm
[53]on line resources︰Optics for Energy Fall 2012.
取自:https:/nanoptics.files.wordpress.com/2012/08/illumination-in-lighttools.pdf
[54]D.H. Kim, et alYEnhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns”, Applied Physics Letters, 87(20), 203508, 2005 .
[55]Y. Gao, et al, “Roughening hexagonal surface morphology on laser lift-off (LLO) N-face GaN with simple photo-enhanced chemical wet etching”, Japanese journal of applied physics, 43(5A), L637, 2004.
[56]R. Windisch R, et al, “40% efficient thin-film surface-textured light-emitting diodes by optimization of natural lithography”, IEEE Transactions on Electron Devices, 47(7), 1492-1498, 2000.
[57]黃詣中,「有機發光二極體光熱電特性整合模擬之研究」,國立中央大學,碩士論文,民國 106 年。
[58]E.R.G. Eckert, M. Robert and Drake Jr., Analysis of Heat and Mass Transfer, Hemisphere Publishing, 1987.
[59]M. Shur, Physics of Semiconductor Devices, Prentice Hall, 1990.
[60]S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer Verlag, 1984.
[61]on line resources︰導熱係數k:Aluminium、SiO2、Al2O3、Ni/Au。
取自:https://refractiveindex.info/
[62]on line resources︰紅外線熱影像儀產品簡介。
取自:德商InfraTec GmbH網頁:
http://www.infratec.de/fileadmin/media/IRMT/Handbuecher/InfraTec-Manual-Va rioCAM-hr-head.pdf
[63]黃宥傑,「太陽能集熱百葉窗設計之研究」,國立中央大學,碩士論文,民國 108 年。
[64]on line resources︰中央大學光電系Probe station with IPCE系統介紹。
取自:http://kylai.cloudweb.com.tw/facilities