跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王耀賢
Yao-Hsian Wang
論文名稱: An Identifier based Channel Hopping Approach for Cognitive Radio Network
指導教授: 張貴雲
Guey-Yun Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 29
中文關鍵詞: 感知網路無線跳頻非同步角色對稱
外文關鍵詞: Cognitive radio networks, Channel-hopping, Asynchronous, symmetric-role
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於頻譜短缺的問題日益嚴重,無線感知網路 (Cognitive Radio Net-works ) 便被發展來解決這個問題。在無線感知網路中用來解決頻譜短缺的方法主要分為兩個大方向,一個是共同的控制用頻道 (Common Control Channel) ,另一個則是無線跳頻 (Channel Hopping)。然而,在共同的控制頻道的方法中,控制用頻道容易被主要使用者 (Primary User) 長時間占用而造成無法進行通訊問題 (CR long-time blocking problem),因此,本篇論文主要在探討後者―無線跳頻的演篹法。在現存的方法中,為了要避免干擾主要使用者,網路中的節點必須相遇在一個目前沒有被主要使用者所使用到的頻道。為了避免通訊失敗,兩節點必須及早相遇在可用的頻道上 (也就是 maximum conditional time to rendezvous (MCTTR) 越小越好)。在本篇論文中,我們提出了一個無線跳頻演算法―ID-CH ,這個演算法無需要時間同步,也不需要事先定義節點的角色 (發訊者及接收者)。ID-CH 的 MCTTR 為( lambda + 1) × (N^2 + N),其中,N 為可用頻道的數目,還有 lambda 為節點所使用的 ID 字串的長度。


    Due to the shortage of Spectra, Cognitive Radio Network (CRN) become a key technique to utilize the licence spectrum. There are two solutions in the CRN, common control channel and channel hopping methods. However, there is a serious problems (i.e., CR long time block-ing problem) in the common control channel method. Thus, this paper foucs on channel hopping method. In order not to interference with the existed network in the channel hopping method, two nodes should rendezvous on an available channel (a channel not used by the user in the existed network) . For avoiding communication failure, two nodes in the CRN should rendezvous on all the available licensed channels and rendezvous on available channel as soon as possible (i,e., minimizing the maximum conditional time to rendezvous (MCTTR)). In this paper, we proposed an channel hopping approach, ID-CH, which is without time synchronization and don’t need to pre-assign roles (sender or receiver) of nodes. ID-CH has MCTTR = (lambda + 1) × (N^2 + N), where N is the number of licensed channels and lambda is the length of binary ID string of a SU.

    Contents List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Figures vii List of Tables ix 1 Introduction 1 2 Related Work 4 2.1 ID-based Channel Hopping Approach . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 none-ID-based Channel Hopping Approach . . . . . . . . . . . . . . . . . . . . . 5 3 ID-CH 9 3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3.1 Case 1: Default column v.s. Default column . . . . . . . . . . . . . . . . 14 3.3.2 Case 2: Default column v.s. bit-1 column . . . . . . . . . . . . . . . . . 14 3.3.3 Case 3: Default column v.s. bit-0 column . . . . . . . . . . . . . . . . . 14 4 Simulation 16 4.1 Impact of the number of PUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1.1 Average TTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1.2 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 v 4.2 Impact of PU busy/idle period . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3 Impact of the number of licensed channels . . . . . . . . . . . . . . . . . . . . . 19 5 Implementation 21 5.1 Ideal scenario on frequency band - 2.7GHz . . . . . . . . . . . . . . . . . . . . . 23 5.1.1 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.1.2 Packet transmission time . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2 noisy scenario on frequency band - 2.4GHz . . . . . . . . . . . . . . . . . . . . . 24 5.2.1 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2.2 Packet transmission time . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3 hybrid scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3.1 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3.2 Packet transmission time . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6 Conclusion 27 Reference 28

    References
    [1] K. Bian and J.-M. Park, “Maximizing rendezvous diversity in rendezvous protocols for
    decentralized cognitive radio networks,” Mobile Computing, IEEE Transactions on, vol. 12,
    no. 7, pp. 1294–1307, July 2013.
    [2] I. Chuang, H.-Y. Wu, K.-R. Lee, and Y.-H. Kuo, “Alternate hop-and-wait channel rendezvous
    method for cognitive radio networks,” in INFOCOM, 2013 Proceedings IEEE,
    April 2013, pp. 746–754.
    [3] L. DaSilva and I. Guerreiro, “Sequence-based rendezvous for dynamic spectrum access,”
    in New Frontiers in Dynamic Spectrum Access Networks, 2008. DySPAN 2008. 3rd IEEE
    Symposium on, Oct 2008, pp. 1–7.
    [4] N. Theis, R. Thomas, and L. DaSilva, “Rendezvous for cognitive radios,” Mobile Computing,
    IEEE Transactions on, vol. 10, no. 2, pp. 216–227, Feb 2011.
    [5] C.-F. Shih, T. Y. Wu, and W. Liao, “Dh-mac: A dynamic channel hopping mac protocol for
    cognitive radio networks,” in Communications (ICC), 2010 IEEE International Conference
    on, May 2010, pp. 1–5.
    [6] P. Bahl, R. Chandra, and J. Dunagan, “Ssch: Slotted seeded channel hopping for
    capacity improvement in ieee 802.11 ad-hoc wireless networks,” in Proceedings of
    the 10th Annual International Conference on Mobile Computing and Networking, ser.
    MobiCom ’04. New York, NY, USA: ACM, 2004, pp. 216–230. [Online]. Available:
    http://doi.acm.org/10.1145/1023720.1023742
    28
    [7] J. Shin, D. Yang, and C. Kim, “A channel rendezvous scheme for cognitive radio networks,”
    Communications Letters, IEEE, vol. 14, no. 10, pp. 954–956, October 2010.
    [8] D. Yang, J. Shin, and C. Kim, “Deterministic rendezvous scheme in multichannel access
    networks,” Electronics Letters, vol. 46, no. 20, pp. 1402–1404, September 2010.
    [9] K. Bian, J.-M. Park, and R. Chen, “A quorum-based framework for establishing
    control channels in dynamic spectrum access networks,” in Proceedings of the
    15th Annual International Conference on Mobile Computing and Networking, ser.
    MobiCom ’09. New York, NY, USA: ACM, 2009, pp. 25–36. [Online]. Available:
    http://doi.acm.org/10.1145/1614320.1614324
    [10] C.-M. Chao and H.-C. Tsai, “A channel hopping multi-channel mac protocol for mobile
    ad hoc networks,” Vehicular Technology, IEEE Transactions on, vol. pp, no. 99, pp. 1–13,
    2014.
    [11] H. Liu, Z. Lin, X. Chu, and Y.-W. Leung, “Ring-walk based channel-hopping algorithms
    with guaranteed rendezvous for cognitive radio networks,” in Green Computing and Communications
    (GreenCom), 2010 IEEE/ACM Int’l Conference on Int’l Conference on Cyber,
    Physical and Social Computing (CPSCom), Dec 2010, pp. 755–760.
    [12] H. Liu, Z. Lin, X. Chu, and Y.-W. Leung, “Jump-stay rendezvous algorithm for cognitive
    radio networks,” Parallel and Distributed Systems, IEEE Transactions on, vol. 23, no. 10,
    pp. 1867–1881, Oct 2012.
    [13] G.-Y. Chang and J.-F. Huang, “A fast rendezvous channel-hopping algorithm for cognitive
    radio networks,” Communications Letters, IEEE, vol. 17, no. 7, pp. 1475–1478, July 2013.
    [14] G.-Y. Chang, W.-H. Teng, H.-Y. Chen, and J.-P. Sheu, “Novel channel-hopping schemes
    for cognitive radio networks,” Mobile Computing, IEEE Transactions on, vol. 13, no. 2,
    pp. 407–421, Feb 2014.
    [15] Y. Zhang, Q. Li, G. Yu, and B. Wang, “Etch: Efficient channel hopping for communication
    rendezvous in dynamic spectrum access networks,” in INFOCOM, 2011 Proceedings IEEE,
    April 2011, pp. 2471–2479.

    QR CODE
    :::