跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅文信
Wu- Shin LO
論文名稱: 剖風儀之關鍵零組件-相移器之研製
Key component of wind profiler-the develop of phase shifter
指導教授: 丘增杰
Tsen-Chieh Chiu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
畢業學年度: 92
語文別: 中文
論文頁數: 63
中文關鍵詞: 相移器延遲線一維光子能隙
外文關鍵詞: phase shifter, delay line, PBG
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是針對一維光子能隙(Photonic Bandgap簡稱PBG)結構能縮小尺寸的特性,來設計所需相位的延遲線,進而研製出相移器。相移器為剖風儀天線陣列提供相位移轉的重要關鍵零組件,主要的設計概念,在於首先設計所需相位的延遲線,接著配合高頻開關的切換,選擇所需相位的路徑。
    PBG所以能縮小尺寸的原因主要為電路結構中等效的電感提供了慢波效應(slow wave effect),由於這個慢波效應,使得PBG的電氣長度會比一般傳輸線長,因此在同樣電氣長度下,PBG的物理長度就會比一般傳輸線短,這樣就會使得所製作的相位偏移器整體的面積就會比較小。 文中將會探討PBG電路所可以設計的參數,並整理出這些參數的規則,利用這些規則來盡量縮小電路的尺寸且達到符合所需要的相位。


    In the thesis, a design concept for the phase shifter using photonic bandgap(PBG)structure is proposed. PBG possesses a slow-wave characteristic caused by the equivalent inductive components. Due to the slow-wave effect, the electrical length of the PBG is increased. Therefore, the physical length of transmission lines can be shortened by inserting PBG while the original electrical length remains the same.
    Sensitivity analysis is conducted on many design arguments of PBG. Based on the analysis, simple design rule of phase-delayed line using PBG is proposed. At the end, a 3 bits phase shifter is realized and verified by measurement in the thesis.

    目 錄 摘要(中文)………………………………………………………………………I 摘要(英文)………………………………………………………………………II 致謝………………………………………………………………………………III 目錄………………………………………………………………………………IV 第一章 緒論…………………………………………………………………1 1.1 簡介與研究動機………………………………………………………1 1.2 內容概要…………………………………………………………………4 第二章 Photonic Bandgap結構電路設計之延遲線…………………5 2.1 簡介………………………………………………………………………5 2.2 Matlab程式模擬一維PBG電路及實現…………………………7 2.2.1 ABCD矩陣與S參數……………………………………………7 2.2.2 Matlab程式模擬…………………………………………………12 2.2.3實現PBG電路架構與模型………………………………………14 2.2.4等效串接電感的模擬與驗證……………………………………16 2.2.5最後PBG結構的實現電路………………………………………20 2.3 通帶慢波效應的分析………………………………………………21 2.3.1單元網路間的傳輸線距離d對slow wave factor的影響………24 2.3.2單元網路加載個數對slow wave factor的影響…………………35 2.3.3加載單元網路之電感值大小對slow wave factor的影響………40 2.3.4結語………………………………………………………………44 2.4 延遲線的實現…………………………………………………46 第三章 相移器的設計……………………………………………………51 3.1 簡介……………………………………………………………………51 3.2 相移器的基本原理與架構…………………………………………52 3.2.1基本原理…………………………………………………………52 3.2.2相移器架構………………………………………………………54 3.3 相移器的實現…………………………………………………………56 第四章 結論…………………………………………………………………61 參考文獻…………………………………………………………………………62

    參考文獻
    [1] T. Y. Yun and K. Chang, “Uniplanar One-dimension photonic bandgapstructures and resonators,” IEEE Trans. Microwave Theory Tech. vol. 49, pp. 549-553, Mar. 2001.
    [2] D. M. Pozar, Microwave Engineering, Addison Wesley, 1990.
    [3] M. Born and E. Wolf, with contributions by A. B. Bhatia ... et al.,
    Principles of optics: electromagnetic theory of propagation, interference
    and diffraction of light, Oxford /Pergamon Press New York, 1980.
    [4] R.N. Simons, Coplanar Waveguide Circuit, Components, and systems,
    John Wiley & Sons Ltd., 2000.
    [5] J.S. Foresi, et al., “Photonic-bandgap microcavities in optical waveguides,”
    Nature, vol. 390, pp. 143-145, 1997.
    [6] T. Y. Yun and K. Chang, “One-dimension photonic bandgap resonators and varactor turned resonators,” in IEEE MTT-S Int. Microwave Symp. Dig. , pp. 1629-1632, Anaheim, CA, June 1999.
    [7] J. S. Lim, C.S. Kim, Y.T. Lee, D. Ahn, amd S. Nam, “A spiral-sharped
    defected ground structure for coplanar waveguide, ” IEEE Microwave and
    Wireless Compon. Lett., vol.12, Sept. 2002.
    [8] V. Radisic, Y. Qian, R. Coccioli, and T. Itoh, “Novel 2-D photonic bandgap structure for microstrip lines,” IEEE Microwave Guided Wave Lett., vol. 8, pp. 69–71, Feb. 1998.
    [9] T. Kim and C. Seo, “A novel photonic bandgap structure for Low-pass filter of wide stopband,” IEEE Microwave and Guided Wave Lett., vol.10, pp.13-15, Jan. 2000.
    [10] I. Rumsey, P. M. Melinda, and P. K. Kelly, “Photonic bandgap structures used as filters in microstrip circuits,” IEEE Microwave Guided Wave Lett., vol.8, pp. 336–338, Oct. 1998.
    [11] J. Yoon and C. Seo, “ Improvement of broadband feedforward
    amplifier using photonic bandgap,” IEEE Microwave and Wireless Compon.
    Lett., vol.11, No.11, Nov. 2001.
    [12] Yu Ji, Steve Yao and Lute Maleki,” High-Q whispering gallery mode resonator filter with photonic bandgap spurious mode suppression,” IEEE/EIA International Frequency Control Symp.and Exhibition 2000.
    [13] F. R. Yang, K. P. Ma, Y. Qian, T. Itoh, ”A uniplanar compact photonic-
    bandgap(UC-PBG)structure and its applicationa for microwave circuits,”
    IEEE Trans. Microwave Theory Tech., vol.47, No.8, Aug.1999.
    [14] F. R. Yang, Y. Qian, T. Itoh, “A novel uniplanar compact PBG structure
    for filter and mixer applications,” IEEE MTT-S Int. Microwave Symp.Dig , pp. 919-922, 1999.
    [15] F. R. Yang, Y. Qian, T. Itoh, ”Characteristics of microstrip lines on a
    uniplanar compact PBG ground plane,”1998 Asia Pacific Microwave
    Conf. Dig., pp. 589-592, Dec. 1998
    [16] Q.Xue, K.M. Shum, and C.H.Chan, ”Novel 1-D microstrip PBG cells,”
    IEEE Microwave Guided Wave Lett., vol.10,pp.403-405,Oct.2000.
    [17] Y. Q. Fu, G. H. Zhang, and N. C. Yuan, ”A novel PBG coplanar waveguide, ”IEEE Microwave and Wireless Compon. Lett., vol.11,No.11, Nov. 2001
    [18] R. E. Collin, Foundations for Microwave Engineering, NewYork: Mc-Graw-Hill, 1966.
    [19] V. Radisic, Y. Qian, T. Itoh, ”Novel architectures for high efficiency amplifier for wireless applications,” IEEE Trans. On Microwave Theory and Tech. vol. 46, No.11, pp.1901-1909, Nov. 1998.
    [20] C. K. Wu, H. S. Wu, and C. K. C. Tzuang. “Electric-magnatic-electric slow-
    wave microstrip line and bandpass filter of compress size,” IEEE Trans. On Microwave Theory and Tech.vol.50, No.8, Aug. 2002.
    [21] IE3D User’s Manual 2000, release7, Zeland.

    QR CODE
    :::