| 研究生: |
王彥貞 Yen-Chen Wang |
|---|---|
| 論文名稱: |
鈷、鎳以及鈷鎳合金薄膜電極材料製備及其產氫活性的研究 |
| 指導教授: |
姚學麟
Shueh-Lin Yau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 186 |
| 中文關鍵詞: | 鈷 、鎳 、鈷鎳合金 、氫氣析出反應 |
| 外文關鍵詞: | cobalt, nickel, cobalt-nickel alloy, hydrogen evolution reaction |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以循環掃描電位的方式,於Au(111)或Pt(111)上沉積鈷、鎳以及不同比例的鈷鎳合金後,於鹼性溶液中(0.1M KOH)測試對氫氣析出反應(hydrogen evolution reaction,HER)之催化活性,而合金中鈷鎳的比例以角解析X射線光電子光譜(ARXPS)來分析,並藉由STM觀察這些金屬的沉積過程與表面形貌。其中CoNi6.1/Au(111)合金電極擁有較小的過電位(-223mV)以及Tafel斜率(87.7mV/dec),對產氫(HER)活性優於純鈷、鎳以及其他比例的合金。於Pt(111)上修飾3層Ni後,其HER活性表現最突出,它有最小的過電位(-53mV),以Tafel斜率(46.9mV/dec)推論, HER的速率決定步驟(rds)為氫氣脫附反應(Heyrovsky步驟),其餘材料的rds皆為氫吸附的反應(Volmer步驟),可能是由於Ni能有利於水的分解,而三層的鎳與白金之間可能有很好的電子效應,能夠提供有利於氫的吸附位點,且OHad與Ni之間的相互作用最為理想,因此大幅提升產氫活性。以STM觀察鈷鎳合金於Au(111)上成長,第一層多以針狀的方式生長為無序或整齊的moiré pattern結構。在Pt(111)上,鈷鎳離子比例為1:1時,第一層沉積膜由兩種金屬共同組成,無整齊的蜂窩狀結構,當鈷鎳比例為1:4時,第一層亦無整齊的蜂窩狀結構,而是長成樹枝狀的樣貌。也以STM觀察pH3與pH5硫酸鹽中,鎳在Au(111)和Pt(111)上的生長。
The electrodeposition of cobalt, nickel and cobalt-nickel alloys on Au(111) and Pt(111) electrodes was studied by using cyclic voltammetry (CV),scanning tunneling microscope (STM) and X-ray photoelectron spectroscopy (XPS). The electrocatalytic activities of the as-prepared filmy materials toward hydrogen evolution reaction (HER) were examined in alkaline media (0.1 M KOH). The chemical compositions of the Co-Ni alloys were analyzed with angle-resolved X-ray photoelectron spectroscopy (ARXPS).The deposition process and surface morphology of these metallic films were observed by STM. The Au(111)-supported CoNi6.1 alloy film exhibited higher HER activity than pure cobalt, nickel and the other alloys, as manifested by a smaller overpotential (-223 mV) and Tafel slope (87.7 mV/ dec). On the Pt(111) electrode the deposition of three monolayer (ML) Ni led to the most active catalyst for HER, as evaluated from the smallest overpotential (-53 mV) and Tafel slope (46.9 mV/dec). This catalyst was unique, in that the rate-determining step (rds) for HER was the hydrogen desorption reaction, as opposed to the hydrogen adsorption reaction found for others. It is assumed that as-preapred Ni films were active sites for the water splitting reaction, which facilitated dissociation of water molecule to OHad. It is assumed that Pt substrate altered the electronic configuration of the three-layer-thick nickel film, which optimized its interaction of H and OH.The first layer of the depositied Co-Ni alloys on Au(111) assumed a needle-like texture, disordered and ordered moiré patterns, which resemble those features observed with pure Ni deposit. The Co-Ni alloy films deposited on Pt(111) from a 1:1 and 1:4 Co2+/Ni2+ solutions had a disordered structure and a dendritic pattern. The latter resulted from a fractal-like growth mode. The electrodeposition of Ni on Au(111) and Pt(111) in pH 3 and pH 5 sulfate media were also examined.
1. Zhu, J.; Hu, L.; Zhao, P.; Lee, L. Y. S.; Wong, K.-Y., Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chemical Reviews 2020, 120 (2), 851-918.
2. Balat, M., Potential Importance of Hydrogen as a Future Solution to Environmental and Transportation Problems. International Journal of Hydrogen Energy 2008, 33, 4013-4029.
3. Sheng, W.; Myint, M.; Chen, J. G.; Yan, Y., Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy & Environmental Science 2013, 6 (5), 1509-1512.
4. Fang, Y.-H.; Liu, Z.-P., Tafel Kinetics of Electrocatalytic Reactions: From Experiment to First-Principles. ACS Catalysis 2014, 4 (12), 4364-4376.
5. Chen, Z.; Duan, X.; Wei, W.; Wang, S.; Ni, B.-J., Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. Journal of Materials Chemistry A 2019, 7 (25), 14971-15005.
6. Anantharaj, S.; Ede, S. R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S., Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. ACS Catalysis 2016, 6 (12), 8069-8097.
7. Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S.-Z., The Hydrogen Evolution Reaction in Alkaline Solution: From Theory, Single Crystal Models, to Practical Electrocatalysts. Angewandte Chemie International Edition 2018, 57 (26), 7568-7579.
8. Ledezma-Yanez, I.; Wallace, W. D. Z.; Sebastián-Pascual, P.; Climent, V.; Feliu, J. M.; Koper, M. T. M., Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nature Energy 2017, 2 (4), 17031.
9. Sarabia, F. J.; Sebastián-Pascual, P.; Koper, M. T. M.; Climent, V.; Feliu, J. M., Effect of the Interfacial Water Structure on the Hydrogen Evolution Reaction on Pt(111) Modified with Different Nickel Hydroxide Coverages in Alkaline Media. ACS Applied Materials & Interfaces 2019, 11 (1), 613-623.
10. Yu, X.; Zhao, J.; Zheng, L.-R.; Tong, Y.; Zhang, M.; Xu, G.; Li, C.; Ma, J.; Shi, G., Hydrogen Evolution Reaction in Alkaline Media: Alpha- or Beta-Nickel Hydroxide on the Surface of Platinum? ACS Energy Letters 2018, 3 (1), 237-244.
11. Subbaraman, R.; Tripkovic, D.; Chang, K.-C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M., Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nature Materials 2012, 11 (6), 550-557.
12. Wang, S.; Lu, A.; Zhong, C.-J., Hydrogen production from water electrolysis: role of catalysts. Nano Convergence 2021, 8 (1), 4.
13. Santos, A. L.; Cebola, M.-J.; Santos, D. M. F., Towards the Hydrogen Economy—A Review of the Parameters That Influence the Efficiency of Alkaline Water Electrolyzers. Energies 2021, 14 (11).
14. Pradhan, N.; Subbaiah, T.; Das, S. C.; Dash, U. N., Effect of zinc on the electrocrystallization of cobalt. Journal of Applied Electrochemistry 1997, 27 (6), 713-719.
15. Allongue, P.; Cagnon, L.; Gomes, C.; Gündel, A.; Costa, V., Electrodeposition of Co and Ni/Au(111) ultrathin layers. Part I: nucleation and growth mechanisms from in situ STM. Surface Science 2004, 557 (1), 41-56.
16. Oriňáková, R.; Turoňová, A.; Kladeková, D.; Gálová, M.; Smith, R. M., Recent developments in the electrodeposition of nickel and some nickel-based alloys. Journal of Applied Electrochemistry 2006, 36 (9), 957-972.
17. Ruqia, B.; Choi, S.-I., Pt and Pt–Ni(OH)2 Electrodes for the Hydrogen Evolution Reaction in Alkaline Electrolytes and Their Nanoscaled Electrocatalysts. ChemSusChem 2018, 11 (16), 2643-2653.
18. Xing, Z.; Han, C.; Wang, D.; Li, Q.; Yang, X., Ultrafine Pt Nanoparticle-Decorated Co(OH)2 Nanosheet Arrays with Enhanced Catalytic Activity toward Hydrogen Evolution. ACS Catalysis 2017, 7 (10), 7131-7135.
19. Hu, H.; Tan, M.; Liu, L., Anomalous codeposition mechanism of Co-Ni alloy nanowires. Journal of Alloys and Compounds 2017, 715, 384-389.
20. Gong, M.; Wang, D.-Y.; Chen, C.-C.; Hwang, B.-J.; Dai, H., A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Research 2016, 9 (1), 28-46.
21. Hong, S. H.; Ahn, S. H.; Choi, I.; Pyo, S. G.; Kim, H.-J.; Jang, J. H.; Kim, S.-K., Fabrication and evaluation of nickel cobalt alloy electrocatalysts for alkaline water splitting. Applied Surface Science 2014, 307, 146-152.
22. González-Buch, C.; Herraiz-Cardona, I.; Ortega, E.; García-Antón, J.; Pérez-Herranz, V., Synthesis and characterization of macroporous Ni, Co and Ni–Co electrocatalytic deposits for hydrogen evolution reaction in alkaline media. International Journal of Hydrogen Energy 2013, 38 (25), 10157-10169.
23. Fang, M.; Gao, W.; Dong, G.; Xia, Z.; Yip, S.; Qin, Y.; Qu, Y.; Ho, J. C., Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions. Nano Energy 2016, 27, 247-254.
24. Zhang, L.; Xiong, K.; Nie, Y.; Wang, X.; Liao, J.; Wei, Z., Sputtering nickel-molybdenum nanorods as an excellent hydrogen evolution reaction catalyst. Journal of Power Sources 2015, 297, 413-418.
25. Zhang, J.; Baró, M. D.; Pellicer, E.; Sort, J., Electrodeposition of magnetic, superhydrophobic, non-stick, two-phase Cu–Ni foam films and their enhanced performance for hydrogen evolution reaction in alkaline water media. Nanoscale 2014, 6 (21), 12490-12499.
26. Negem, M.; Nady, H., Electroplated Ni-Cu nanocrystalline alloys and their electrocatalytic activity for hydrogen generation using alkaline solutions. International Journal of Hydrogen Energy 2017, 42 (47), 28386-28396.
27. Li, Y.; Zhang, X.; Hu, A.; Li, M., Morphological variation of electrodeposited nanostructured Ni-Co alloy electrodes and their property for hydrogen evolution reaction. International Journal of Hydrogen Energy 2018, 43 (49), 22012-22020.
28. Nishizawa, T.; Ishida, K., The Co−Ni (Cobalt-Nickel) system. Bulletin of Alloy Phase Diagrams 1983, 4 (4), 390-395.
29. Sakita, A. M. P.; Della Noce, R.; Fugivara, C. S.; Benedetti, A. V., On the cobalt and cobalt oxide electrodeposition from a glyceline deep eutectic solvent. Physical Chemistry Chemical Physics 2016, 18 (36), 25048-25057.
30. Frank, A. C.; Sumodjo, P. T. A., Electrodeposition of cobalt from citrate containing baths. Electrochimica Acta 2014, 132, 75–82.
31. Abd El Rehim, S. S.; Abd El Wahaab, S. M.; Ibrahim, M. A. M.; Dankeria, M. M., Electroplating of cobalt from aqueous citrate baths. Journal of Chemical Technology & Biotechnology 1998, 73 (4), 369-376.
32. Cui, C. Q.; Lee, J. Y., Nickel deposition from unbuffered neutral chloride solutions in the presence of oxygen. Electrochimica Acta 1995, 40 (11), 1653-1662.
33. Suzuki, T.; Yamada, T.; Itaya, K., In Situ Electrochemical Scanning Tunneling Microscopy of Ni(111), Ni(100), and Sulfur-Modified Ni(100) in Acidic Solution. The Journal of Physical Chemistry 1996, 100 (21), 8954-8961.
34. Baker, H., Introduction to phase diagrams, alloy phase diagrams. ASM International: Cleveland, 1992.
35. García-Torres, J.; Gispert, C.; Gómez, E.; Vallés, E., Alginate electrodeposition onto three-dimensional porous Co–Ni films as drug delivery platforms. Physical Chemistry Chemical Physics 2015, 17 (3), 1630-1636.
36. Tarrús, X.; Montiel, M.; Vallés, E.; Gómez, E., Electrocatalytic oxidation of methanol on CoNi electrodeposited materials. International Journal of Hydrogen Energy 2014, 39 (12), 6705-6713.
37. Yang, K.; Zhou, L.; Xiong, X.; Ye, M.; Li, L.; Xia, Q., RuCuCo nanoparticles supported on MIL-101 as a novel highly efficient catalysts for the hydrolysis of ammonia borane. Microporous and Mesoporous Materials 2016, 225, 1-8.
38. Qiu, F.; Li, L.; Liu, G.; Wang, Y.; Wang, Y.; An, C.; Xu, Y.; Xu, C.; Wang, Y.; Jiao, L.; Yuan, H., In situ synthesized Fe–Co/C nano-alloys as catalysts for the hydrolysis of ammonia borane. International Journal of Hydrogen Energy 2013, 38 (8), 3241-3249.
39. Zhang, B.; Zhang, X.; Wei, Y.; Xia, L.; Pi, C.; Song, H.; Zheng, Y.; Gao, B.; Fu, J.; Chu, P. K., General synthesis of NiCo alloy nanochain arrays with thin oxide coating: a highly efficient bifunctional electrocatalyst for overall water splitting. Journal of Alloys and Compounds 2019, 797, 1216-1223.
40. Qazi, U. Y.; Yuan, C.-Z.; Ullah, N.; Jiang, Y.-F.; Imran, M.; Zeb, A.; Zhao, S.-J.; Javaid, R.; Xu, A.-W., One-Step Growth of Iron–Nickel Bimetallic Nanoparticles on FeNi Alloy Foils: Highly Efficient Advanced Electrodes for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2017, 9 (34), 28627-28634.
41. 林廷駿. 以掃描式穿隧電子顯微鏡觀察氫氧化鎳於金(111)上結構及對甲醛氧化活性. 2018.
42. Pissinis, D. E., Utilization of special potential scan programs for cyclic voltammetric development of different nickel oxide-hydroxide species on Ni based electrodes. 2012.
43. Hall, D.; Bock, C.; MacDougall, B., The Electrochemistry of Metallic Nickel: Oxides, Hydroxides, Hydrides and Alkaline Hydrogen Evolution. Journal of The Electrochemical Society 2013, 160, F235-F243.
44. Badawy, W. A.; Nady, H.; Negem, M., Cathodic hydrogen evolution in acidic solutions using electrodeposited nano-crystalline Ni–Co cathodes. International Journal of Hydrogen Energy 2014, 39 (21), 10824-10832.
45. Trasatti, S., Electronegativity, work function, and heat of adsorption of hydrogen on metals. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1972, 68 (0), 229-236.
46. Conway, B. E.; Bai, L., Determination of adsorption of OPD H species in the cathodic hydrogen evolution reaction at Pt in relation to electrocatalysis. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1986, 198 (1), 149-175.
47. Hamelin, A.; Sottomayor, M. J.; Silva, F.; Chang, S.-C.; Weaver, M. J., Cyclic voltammetric characterization of oriented monocrystalline gold surfaces in aqueous alkaline solution. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1990, 295 (1), 291-300.
48. Li, -. J.-j.; Wei, -. J.; Cai, -. J.; Chen, -. Y.-x., - pH Effect on Oxidation of Hydrogen Peroxide on Au(111) Electrode in Alkaline Solutions. - Chinese Journal of Chemical Physics 2018, - 31 (- 6), - 779.
49. Diaz-Morales, O.; Calle-Vallejo, F.; de Munck, C.; Koper, M. T. M., Electrochemical water splitting by gold: evidence for an oxide decomposition mechanism. Chemical Science 2013, 4 (6), 2334-2343.
50. Koza, J. A.; Hull, C. M.; Liu, Y.-C.; Switzer, J. A., Deposition of β-Co(OH)2 Films by Electrochemical Reduction of Tris(ethylenediamine)cobalt(III) in Alkaline Solution. Chemistry of Materials 2013, 25 (9), 1922-1926.
51. Pissinis, D.; Sereno, L.; Marioli, J., Utilization of Special Potential Scan Programs for Cyclic Voltammetric Development of Different Nickel Oxide-Hydroxide Species on Ni Based Electrodes. Open J. Phys. Chem. 2012, 2.
52. Young, D. A., Phase diagrams of the elements. Lawrence Livermore National Laboratory: Livermore, California, 1975.
53. Braunschweig, B.; Daum, W., Superstructures and Order−Disorder Transition of Sulfate Adlayers on Pt(111) in Sulfuric Acid Solution. Langmuir 2009, 25 (18), 11112-11120.
54. Seyeux, A.; Maurice, V.; Klein, L. H.; Marcus, P., In situ scanning tunnelling microscopic study of the initial stages of growth and of the structure of the passive film on Ni(111) in 1 mM NaOH(aq). Journal of Solid State Electrochemistry 2005, 9 (5), 337-346.
55. Zhang, Z.; Lagally, M. G., Atomistic Processes in the Early Stages of Thin-Film Growth. Science 1997, 276 (5311), 377.
56. Schmidt, T. J.; Stamenkovic, V.; Attard, G. A.; Markovic, N. M.; Ross, P. N., On the Behavior of Pt(111)−Bi in Acid and Alkaline Electrolytes. Langmuir 2001, 17 (24), 7613-7619.
57. Spendelow, J. S.; Goodpaster, J. D.; Kenis, P. J. A.; Wieckowski, A., Mechanism of CO Oxidation on Pt(111) in Alkaline Media. The Journal of Physical Chemistry B 2006, 110 (19), 9545-9555.
58. Gómez-Marín, A. M.; Rizo, R.; Feliu, J. M., Oxygen reduction reaction at Pt single crystals: a critical overview. Catalysis Science & Technology 2014, 4 (6), 1685-1698.
59. Marković, N. M.; Schmidt, T. J.; Grgur, B. N.; Gasteiger, H. A.; Behm, R. J.; Ross, P. N., Effect of Temperature on Surface Processes at the Pt(111)−Liquid Interface: Hydrogen Adsorption, Oxide Formation, and CO Oxidation. The Journal of Physical Chemistry B 1999, 103 (40), 8568-8577.