| 研究生: |
廖常至 Chung-Chih Liao |
|---|---|
| 論文名稱: |
傅氏分析在組合學的應用與Roth定理 Applications of finite Fourier analysis to combinations and Roth theorem |
| 指導教授: |
沈俊嚴
Chun-Yen Shen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 21 |
| 中文關鍵詞: | Roth定理 、傅氏分析 、組合學 |
| 外文關鍵詞: | Roth, Fourier analysis, combinations |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Roth 定理闡述了如果一個正整數的子集的"密度"大於0,則它包含一個長度為3的等差數列。在本篇論文,我們探討了傅氏分析在組合學上的一些運用。除此之外,利用一些基本數論的結果,我們了解如何使用傅氏分析來證明Roth 定理。
The celebrated result of Roth asserts that there exists an arithmetic progression of length three in a subset in integers with positive upper density. The result has been reproved and generalized later by many people. In this thesis, we study the approaches of Fourier analysis methods. We will see that the Finite Fourier analysis is powerful enough to prove the Roth theorem.
Heath-Brown, David Rodney. "Integer sets containing no arithmetic progressions." J. London Math. Soc.(2) 35.3 (1987): 385-394.
Iosevich, Alex. "Roth’s theorem on arithmetic progressions." (2003).
Szemerédi, Endre. "Integer sets containing no arithmetic progressions." Acta Mathematica Hungarica 56.1-2 (1990): 155-158.
Tao, Terence, and Van H. Vu. {\it Additive combinatorics}. Vol. 105. Cambridge University Press, 2006, ch.4.