跳到主要內容

簡易檢索 / 詳目顯示

研究生: 高敏淳
Min-chun Kao
論文名稱: 電力選擇權之定價-以均值回歸Lévy模型
Pricing Electricity Option under a Mean Reversion Lévy Model
指導教授: 楊曉文
Sharon S. Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融學系
Department of Finance
畢業學年度: 99
語文別: 中文
論文頁數: 28
中文關鍵詞: 電力選擇權均值回歸Lévy
外文關鍵詞: Mean Reversion Lévy, Electricity Option
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電力市場在早期主要由政府高度控制,不存在價格風險,近年來各國政府開放政策後,使越來越多的民間廠商進入市場,消費者也可自由洽談購買電力。而電力與其他商品相比,具有不可存儲的特性,這使得電力價格決定於每個時間點的供需平衡上,波動性很大,像是電力需求大增,或是電廠產能突然下降,就會造成價格跳躍,也使電力的生產者與消費者皆面臨很大的風險。1990年開始有電力交易所的出現,而後幾年更推出電力衍生性商品,目的就是規避掉價格變動的風險。像對需要長期大量使用電力的工廠來說,可以透過購買電力選擇權,將成本鎖定在一定水準。但電力的特色使模型建構不易,很難做衍生性商品的定價,本文先沿用過去文獻做法將電力價格模型拆成季節趨勢部分與隨機變動部分,在隨機變動過程使用OU-type的均值回歸Lévy模型:OU-VG與OU-NIG模型建構,發現OU-VG配適結果較佳,接著模型經由Conditional Esscher Transform轉換到風險中立測度下,利用蒙地卡羅法模擬算出電力選擇權的買權價格。


    In the past, the electricity market was controlled by the government so there was no price risk. Recently, governments have taken open policies. More and more private firms entered the market and consumers also could purchase power freely. Compared with other commodities, the price of electricity is determined by supply and demand at each point of time due to non-storability of electricity. If electricity demand rises or power production drops suddenly would cause the price to jump. The power producers and consumers face great risk because of high volatility of electricity price. Power exchanges began in 1990 and electricity derivatives whose purposes were to avoid the risk of price volatility were introduced in few years later. Firms which need huge amount of electricity can buy electricity options and control the cost. However, modeling electricity prices is not easy owing to the characteristics of electricity; it is also difficult to price electricity derivatives. Hence, this study splits electricity price model into seasonal trend and random change parts based on the past literatures. In random process, we use OU-type process of mean-reversion Lévy Model, OU-VG and OU-NIG model and find that OU-VG fits better. Subsequently, the model via Conditional Esscher Transform switches to risk-neutral measure and use Monte Carlo simulation to calculate the call price of power option.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 V 表目錄 VI 第一章 緒論 1 第二章 電力市場介紹及文獻回顧 3 2.1電力市場 3 2.1.1 歐洲能源交易所(EEX) 4 2.1.2 電力價格特性 6 2.2 電力市場相關文獻 7 第三章 模型介紹與估計方法 10 3.1 季節週期趨勢 10 3.2 均值回歸模型 11 3.3 LÉVY模型 11 3.4 LÉVY OU模型 12 3.5模型估計方法 14 第四章 資料分析 15 4.1 季節趨勢模型 16 4.2 均值回歸參數 17 4.3 殘差項檢定 17 第五章 模擬與定價 20 5.1 現貨價格模擬 20 5.2 風險中立測度轉換 20 5.2 電力選擇權定價 22 第六章 結論 25 參考文獻 26

    國外文獻
    [1] Barndorff-Nielsen, O.E. ,”Normal inverse Gaussian distributions and stochastic volatility modelling”,Scandinavian Journal of Statistics , Vol. 24, pp.1-13,March 1997.
    [2] Benth, F.E., and J. Saltyte-Benth,”Stochastic Modelling of Temperature Variations with a View Towards Weather Derivatives”,Applied Mathematical Finance,Vol. 12,Issue 1, pp. 53-85, 2005.
    [3] Benth F.E., Meyer-Brandis T. and Kallsen J. ,“A non-Gaussian Ornstein-Uhlenbeck process for electricity spot price modeling and derivatives pricing”, Applied Mathematical Finance, Vol. 14, Issue 2, pp.153-169, May 2007.
    [4] Carr, P., H. Geman, D. Madan, and M. Yor, “The Fine Structure of Asset Returns: An Empirical Investigation”, Journal of Business, 75, pp.305-332,2002.
    [5] Cartea, A., Figueroa, M.G., “Pricing in electricity markets: a mean reverting jump diffusion model with seasonality”, Applied Mathematical Finance, Vol. 12, Issue 4,pp. 313–335,2005.
    [6] Christophe Chorro , Guégan D., Ielpo F. ,” Option pricing for GARCH-type models with generalized hyperbolic innovations”, Centre d’Economie de la Sorbonne Working Paper No. 2010.23, July 2010.
    [7] Claudia Klüppelberg, Thilo Meyer-Brandis and Andrea Schmidt, “Electricity spot price modelling with a view towards extreme spike risk”. Quantitative Finance, Vol 10, Issue 9, pp.963-974, November 2010.
    [8] Clewlow, L. and Strickland, C.,” Energy Derivatives – Pricing and Risk Management “, Lacima Publications, London,2000.
    [9]Collet, J.,Duwig, V.,Oudjane, N., “Some non-Gaussian models for electricity spot Prices”, Probabilistic Methods Applied to Power Systems , June 2006.
    [10] Gerber H. U. and Shiu E. S. W., "Option Pricing by Esscher Transforms" ,Transactions of the Society of Actuaries, Vol. 46, pp. 99–191,1994.
    [11] Kaminski V.,” The Challenge of Pricing And Risk Managing Electricity Derivatives”, The U.S. Power Market, pp.149-71, 1997.
    [12] Liao, S. Shyu, D. Tzang, S. Hung, C. ,”A Garch process with timechanged L′evy innovations and its applications from an economic perspective” The Icfai University Journal of Financial Risk Management, Vol. 5, pp. 7-19, June 2008.
    [13] Lucia, J. J. Schwarz., E. S.,”Electricity prices and power derivatives: Evidence from the nordic power exchange”, Review of Derivatives Research, Vol. 5,pp. 5-50,June 2002.
    [14] Lung-fu Chang and Mao-wei Hung,” Analytical valuation of catastrophe equity options with negative exponential jumps”, Mathematics and Economics, Vol. 44, Issue 1, pp. 59-69,2009.
    [15] Madan, D. B., P. Carr, and E. C. Chang ,” The variance gamma process and option
    Pricing”,European Finance Review,Vol. 2, Issue 1,pp. 79-105,June 1998.
    [16] Mayer, Klaus, Schmid, Thomas and Weber, Florian, “Modeling Electricity Spot Prices - Combining Mean-Reversion, Spikes and Stochastic Volatility”, CEFS Working Paper Series, No. 2, 2011.
    [17] Michael Bierbrauer, Christian Menn, Svetlozar T. Rachev and Stefan Truck,“Spot and derivative pricing in the EEX power market”, Journal of Banking & Finance ,Vol 31, Issue 11, pp. 3462-3485, June 2007.
    [18] Schwartz, E.S., “The stochastic behavior of commodity prices: Implications for valuation and hedging”, Journal of Finance, Vol. 52, pp. 923-973,July 1997.
    [19] Weron Rafal, Simonsen I. and Wilman P., “Modeling highly volatile and seasonal markets: evidence from the Nord Pool electricity market”, The Application of Econophysics, Tokyo, Springer, pp. 182–192, 2004.
    [20] Weron Rafal.,“Modeling and forecasting electricity loads and prices: A statistical approach ”,Wiley Finance Series, 2006.
    國內文獻
    [1] 王昭文,「考量房價跳躍風險下房屋抵押貸款保險之評價」,風險管理學報,第十二卷,第一期, 53~68頁,2010。

    QR CODE
    :::