| 研究生: |
陳雅馨 Ya-sing Chen |
|---|---|
| 論文名稱: |
利用水處理污泥合成活性碳-沸石複合材料同時去除染料與重金屬之研究 Study on synthesis of activated carbon-zeolite composites from water treatment sludge and their applications |
| 指導教授: |
王鯤生
Kuen-sheng Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 下水污泥 、淨水污泥 、活性碳 、沸石 、吸附 |
| 外文關鍵詞: | Water Purification Sludge, Primarily Sewage Sludge, Activated carbon, Zeolite, Adsorption |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討利用下水污泥與淨水污泥灰作為碳及矽、鋁源,以鹼熔與水熱兩階段程序合成活性碳-沸石複合吸附材料,並藉由有機及無機污染物吸附試驗來評估其作為環境淨化資材之可行性。複合吸附材料製備過程是以混合不同比例之下水污泥與淨水污泥灰,來配置污泥原料中之Si/Al莫耳比與碳含量,進而探討其對複合吸附材料中沸石結晶物種之影響。實驗結果證實影響沸石結晶物種之主要因子為原料之Si/Al莫耳比。下水污泥與淨水污泥灰之混合比例1:9之原料理論Si/Al為1.57,所製備出複合材料ACZ1090為低活性碳含量之純相Na-A型沸石;而混合比例為3:7之ACZ3070與5:5之ACZ5050原料之理論Si/Al分別為1.72與1.93,所製備出之兩複合材料活性碳含量則分別為2.75 %及4.14 %,而主要沸石結晶物種皆為Na-X型沸石。等溫吸附試驗結果,發現三組以不同混合比例之水處理污泥所製備出的活性碳-沸石複合吸附材料ACZ1090、ACZ3070及ACZ5050個別吸附MB、Cu(II)、Cd(II)皆符合Langmuir模式,而複合吸附材料ACZ1090對MB、Cu(II)及Cd(II)之最大吸附量依序為0.10、0.68、0.49 mmole/g;ACZ3070為0.11、0.64、0.50 mmole/g;ACZ5050則為0.14、0.56、0.45 mmole/g。而在多成份污染物吸附試驗發現三組以水處理污泥為原料所製備出的複合吸附材料對污染物之吸附選擇性順序為Cu(II)>Cd(II)>MB。最後,比較市售沸石與自製複合吸附材料之污染物去除能力,確定以水處理污泥所製備出之活性碳-沸石複合吸附材料具有一定之污染物去除效力,確實可作為環境淨化資材。
This study investigated the feasibility of synthesizing activated carbon-zeolite composites (AC-Z composites), using primarily sewage and water purification sludge as starting silicon, aluminum and carbon sources; and the AC-Z composites as synthesized in this study were evaluated for their adsorption behavior of Cd, Cu and methylene blue (MB), in hope that such composites could be applied to remove organic and inorganic pollutants simultaneously.
Firstly, the starting sludges as received were pretreated by drying and/or incineration to provide the dry sewage sludge (DSS) and the water purification sludge ash (WPSA), respectively, for the subsequent study. Secondly, it is supposed that the silicon and aluminum sources are provide by both DSS and WPSA, and the carbon source solely by DSS, and that the molar ratio of Si/Al and carbon content can affect the synthesis of zeolite and production of activated carbon; therefore, starting materials with various Si/Al ratio and carbon content were prepared by a mix design of DSS and WPSA (i.e., DSS:WPSA=1:9, 3:7 and 5:5). Thirdly, the synthesis of AC-Z composites were conducted by an alkali fusion, followed by a hydrothermal process.
The results indicate that the resultant ACZ1090 composite ( i.e., DSS:WPSA=1:9 for the starting mixture) was confirmed to contain trace amount of activated carbon and single-phased Na-A zeolite as main phase; in contrast, ACZ3070 composite, 2.75% activated carbon and Na-X zeolite as main phase; and ACZ5050 composite, 4.14% activated carbon and Na-X zeolite also as main phase. The results suggest that the activated carbon content in the resultant composites increased with increasing mix portion of DSS; and the theoretical Si/Al ratio of the starting mixture increased with the increasing portion of DSS (i.e., from 1.57 to 1.93), it seemed that with the increasing Si/Al ratio, the main crystal phase of in the resultant composites shifted from Na-A type to Na-X type.
The resultant AC-Z composites were evaluated for their adsorption of MB, Cu(II) and Cd(II). The adsorption of MB, Cu(II) and Cd(II), respectively, in a single component system, was found well fitted with the Langmuir model. The maximum adsorption of MB, Cu(II) and Cd(II), in a single component system was found to be 0.10, 0.68 and 0.49 mmole/g, respectively for ACZ1090 composite; and in comparison, 0.11, 0.64 and 0.50 mmole/g, respectively, for ACZ3070 composite; and 0.14, 0.56 and 0.45 mmole/g, respectively, for ACZ5050 composite. All the adsorption performance was comparable to that of the commercial grade 4A zeolite and 13X zeolite. However, the adsorption of MB, Cu(II) and Cd(II), in a multi-component system showed decreased adsorption quantity for the tested adsorbates, possibly due to the competition among the adsorbates. It was found that the selectivity for the tested adsorbates in decreasing order was Cu(II)>Cd(II)>MB.
This work demonstrated that it is feasible and beneficial to synthesize activated carbon-zeolite composites (AC-Z composites) with primarily sewage and water purification sludge as starting silicon, aluminum and carbon sources. The results may contribute to the recycling of water treatment sludges and the production of green activated carbon-zeolite composites.
1. Alvarez-Ayuso Q., Garcia-Sanchez A. and Querol X., “Purification of metal electroplating waste waters using zeolites”, Water Research, Vol. 37, No. 20, pp. 4855-4862 (2003).
2. Bhatia S., “Zeolite Catalysis: Principles and Applications”, CRC Press, Florida, Chapter 1-2 (1990).
3. Berkgaut V. and Singer A., “High capacity cation exchanger by hydrothermal zeolitization of coal fly ash”, Applied Clay Science, Vol. 10, No. 5, pp. 369-378 (1996).
4. Chang H.L., and Shih W.H., “Synthesis of zeolite A and X from fly ashes and their ion-exchange behavior with cobalt ions”, Industrial and Engineering Chemistry Research, Vol. 39, No. 11, pp. 4185-4191 (2000).
5. Foo K.Y. and Hameed B.H., “The environmental applications of activated carbon/zeolite composite materials”, Advances in Colloid and Interface Science, Vol. 162, No. 1-2, pp. 22-28 (2011).
6. Gao N.F., Kume S. and Watari K.,“Zeolite-carbon composites prepared from industrial wasted: (I) Effects of processing parameters”, Materials Science and Engineering A, Vol. 399, No. 1-2, pp. 216-221 (2005).
7. Hollman G.G., Steenbruggen G. and Janssen-Jurkovicova M., “A two-step process for the synthesis of zeolites from coal fly ash”, Fuel, Vol. 78, No. 10, pp.1225-1230 (1999).
8. Hui K.S., Chao C.Y.H. and Kot S.C., “Removal of mixed heavy metal ion in wastewater by zeolite 4A and residual products from recycled coal fly ash”, Journal of Hazardous Materials B, Vol. 127, No. 1-3, pp. 89-101 (2005).
9. Ibrahim H.S., Jamil T.S. and Hegazy E.Z., “Application of zeolite prepared from Egyptian kaolin for the removal of heavy metals: II. Isotherm models”, Journal of Hazardous Materials, Vol. 182, No. 1-3, pp. 842-847 (2010).
10. Jha V.K., Matsuda M. and Miyake M., “Sorption properties of the active carbon-zeolite composite prepared coal fly ash for Ni2+, Cu2+, Cd2+ and Pb2+”, Journal of Hazardous Materials, Vol. 160, No. 1, pp. 148-153 (2008).
11. Jha V.K., Nagae M., Matsuda M. and Miyke M., “Zeolite formation from coal fly ash and heavy metal ion removal characteristics of thus-obtained Zeolite X in multi-metal systems”, Journal of Environmental Management, Vol. 90, No. 8, pp. 2507-2541 (2009).
12. Kang S.J., Egashira K. and Yoshida A., “Transformation of a low-grade Korean natural zeolite to high cation exchanger by hydrothermal reaction with or without fusion with sodium hydroxide”, Applied Clay Science, Vol. 13, No. 2, pp. 117-135 (1998).
13. Katsuki H. and Komarneni S., “Synthesis of Na-A and/or Na-X zeolite/ porous carbon composites from carbonized rice husk”, Journal of Solid State Chemistry, Vol. 182, No. 7, pp. 1749-1753 (2009).
14. Keka O., Narayan C.P. and Amar N.S., “Zeolite from fly ash: synthesis and characterization”, Bulletin of Materials Science, Vol. 27, No. 6, pp. 555-564 (2004).
15. Miyake M., Kimure Y., Ohashi T. and Matsuda M., “Preparation of activated carbon-zeolite composite materials from coal fly ash”, Microporous and Mesoporous Materials, Vol. 112, No. 1-3, pp. 170-177 (2008).
16. Molina A. and Pool C., “A comparative study using two methods to produce zeolites from fly ash”, Minerals Engineering, Vol. 17, No. 2, pp. 167-173 (2004).
17. Penilla R.P., Bustos A.G. and Elizalde S.G., “Immobilization of Cs, Cd, Pb and Cr by synthetic zeolites from Spanish low-calcium coal fly ash”, Fuel, Vol. 85, No. 5-6, pp. 823-832 (2006).
18. Poole C., Prijatama H. and Rice N.M., “Synthesis of zeolite adsorbents by hydrothermal treatment of PFA wastes: A comparative study”, Minerals Engineering, Vol. 13, No. 8-9, pp.831-842 (2000).
19. Querol X., Moreno N., Umana J.C., Alastuey A. and Hernandez E., “Synthesis of zeolites from coal fly ash: an overview ”, International Journal of Coal Geology, Vol. 50, No. 1-4, pp. 413-423 (2002).
20. Rios C.A., Williams C.D. and Fullen M.A., “Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods”, Applied Clay Science, Vol. 42, No. 3-4 , pp. 446-454 (2009).
21. Ruen-ngam D. and Rungsuk D., “Zeolite formation from Coal fly ash and its adsorption potential”, Journal of the Air and Management Association, Vol. 59, No. 10, pp. 1140-1147 (2009).
22. Shigemoto N. and Hayashi H., “Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction reaction”, Journal of Materials Science, Vol. 28, No. 17, pp. 4781-4786 (1993).
23. Singer A. and Berkgaut V., “Cation exchange properties of hydrothermally treated coal fly ash”, Environmental Science and Technology, Vol. 29, No. 7, pp. 1748-1753 (1995).
24. Somerset V.S., Petrik L.F., White R.A., and Klink M.J., “Alkaline hydrothermal zeolites synthesized from high SiO2 and Al2O3 co-disposal fly ash filtrates”, Fuel, Vol. 84, No. 18, pp. 2324-2329 (2005)
25. Sprynskyy M., Buszewski B., Terzyk A.P. and Naniesnik J., “Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cu2+) adsorption on clinoptilolite”, Journal of Colloid and Interface Science, Vol. 304, No. 1, pp. 21-28 (2006).
26. Tamura C., Matsuda M. and Miyake M., “Conversion of waste incineration fly ash into zeolite A and zeolite P by hydrothermal treatment”, Journal of Ceramic Society of Japan, Vol. 114, No. 2, pp. 205-209 (2006).
27. Tanaka H. and Fujii A., “Effect of stirring on the dissolution of coal fly ash and synthesis of pure-form Na-A and Na-X zeolites by two-step process”, Advanced Powder Technology, Vol. 20, No. 5, pp. 473-479 (2009).
28. Visa M., Bogatu C. and Duta A., “Simultaneous adsorption of dyes and heavy metals from multicomponent solutions using fly ash”, Applied Surface Science, Vol. 256, No. 17, pp. 5486-5491 (2010).
29. Wajima T. and Ikegami Y., “Synthesis of crystalline zeolite-13X from waste porcelain using alkali fusion”, Ceramic International, Vol. 35, No. 7, pp. 2983-2986 (2009).
30. Wang C.F., Li J.S., Wang L.J. and Sun X.Y., “Influence of NaOH concentrations on synthesis of pure-form zeolite A from fly ash using two-stage method”, Journal of Hazardous Materials, Vol. 155, No. 1-2, pp. 58-64 (2008).
31. Wang C., Li J., Wang L., Sun X. and Huang J., “Adsorption of dye from wastewater by zeolites synthesized from fly ash: Kinetic and Equilibrium studies”, Chinese Journal of Chemical Engineering, Vol. 17, No. 3, pp. 513-521 (2009).
32. Wang C., Li J., Wang L., Sun X., Wang L. and Sun X., “Evaluation of zeolites synthesized from fly ash as potential adsorbents for wastewater containing heavy metals”, Journal of Environmental Sciences, Vol. 21, No. 1, pp. 127-136 (2009).
33. Wu D., Sui Y., He S., Wang X., Li C. and Kong H., “Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash”, Journal of Hazardous Materials, Vol. 155, No. 3, pp. 415-423 (2008).
34. Yuan R., Guan R., Shen W. and Zheng J., “Photocatalytic degradation of methylene blue by combination of TiO2 and activated carbon fibers”, Journal of Colloid and Interface Science, Vol. 282, No. 1, pp. 87-91 (2005).
35. 王明光,王敏昭,“實用儀器分析”,合記圖書出版社,台北市(2003)。
36. 王俊傑,“KOH活化法裂解都市下水污泥生成吸附劑之研究”,碩士論文,國立中央大學環境工程研究所,中壢市 (2008)。
37. 王國鎮,楊思明,“沸石觸媒之特性與應用”,化工技術,第二卷,第三期,第44-53頁 (1994)。
38. 內政部營建署 http://www.cpami.gov.tw/
39. 台灣自來水公司http://www.water.gov.tw/
40. 台北市政府工務局衛生下水道工程處 http://www.sso.taipei.gov.tw/
41. 甘佳欣,“以次氯酸去除染整廢水色度之反應動力學研究”,碩士論文,國立中山大學環境工程研究所,高雄市(1999)。
42. 行政院環境保護署 http://www.epa.gov.tw/
43. 林志鴻,“淨水污泥再利用於水泥生料之研究”,碩士論文,國立中央大學環境工程研究所,中壢市 (2010)。
44. 林忠逸,“水處理工程廢棄污泥及煉鋼廢爐渣燒製環保水泥之材料特性研究”,碩士論文,國立中央大學環境工程研究所,中壢市 (2003)。
45. 胡克偉,賈冬艷,查春梅,張昀,關連珠,“天然沸石對重金屬離子的競爭性吸附研究”,中國土壤與肥料,第2008卷,第3期,第66-69頁 (2008)。
46. 徐以玲,“水中銅、鎘重金屬離子與奈米碳管上之吸附研究”,碩士論文,國立雲林科技大學環境與安全衛生系,雲林縣 (2006)。
47. 徐如人、龐文琴,“無機合成與製備化學”,五南圖書出版股份有限公司,台北市 (2004)。
48. 張白青,“固態核磁共振於沸石Y經脫鋁及氟化後之鑑定與其機制探討”,碩士論文,國立中央大學化學研究所,中壢市 (2006)。
49. 張有義、郭蘭生,“膠體及界面化學入門”,高立圖書有限公司,台北市 (1997)。
50. 張鈞維,“以淨水污泥及鐵氧化物吸附劑去除水庫水體含磷之研究”,碩士論文,國立成功大學環境工程學系,台南市 (2006)。
51. 張添晉、陳俞穎,“有機污泥之生物減量技術”,永續產業發展期刊,第三十八期,第66-77頁 (2008)。
52. 黃彥林,“煤系高嶺土合成4Å沸石試驗研究”,岩石礦物學雜誌,第十八卷,第二期,第176-185頁 (1999)。
53. 經濟部水利署全球資訊網 http://www.wra.gov.tw/
54. 經濟部工業局工業廢棄物清理與資源化資訊網 http://proj.moeaidb.gov.tw/riw/
55. 蔡正國,“複合奈米碳管吸附水溶重金屬之應用研究”,碩士論文,國立雲林科技大學環境與安全衛生工程系,雲林縣 (2005)
56. 蔡振球,“都市下水污泥灰燒結輕質化特性之研究”,博士論文,國立中央大學環境工程研究所,中壢市 (2006)。
57. 趙桂蓉,“冒泡泡的分子篩-沸石在觸媒界的應用”,科學月刊全文資訊庫,第0250期 (1990)。
58. 劉錡樺,“水處理污泥轉換活性碳-沸石複合吸附材料之研究”,碩士論文,國立中央大學環境工程研究所,中壢市 (2010)。