跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李政鋼
Cheng-Kang Li
論文名稱: 液化地盤離岸風機單樁基礎之離心模型試驗
指導教授: 黃俊鴻
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 233
中文關鍵詞: 液化地盤離岸風機單樁基礎
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣近年環保意識崛起,因此風力發電可以替代火力或核能發電等非再生能源的方式逐漸被受到重視,更由於台灣西部沿岸風力資源豐富,進而發展離岸風機。然而台灣位於環太平洋地震帶,且西部沿岸海底多為疏鬆砂土,因此在地震發生時的淺層砂土發生液化可能性相當高。故本研究將以離心模型試驗探討單樁基礎(Mono-pile)土壤液化時的受震反應。本研究以德國離岸風力發電機組(Siemens SWT-4.0)之單樁基礎為原型,先將原型尺寸折減為35%,再依據尺度定律將折減後的單樁基礎進行80g的離心縮尺,模型樁底部採樁尖設計,樁底為自由端與試驗箱底部沒有接觸或連接。試驗配置以乾砂試體與飽和試體比較土壤液化發生時樁基礎的反應,並且討論不同的輸入震動波形(Sin-wave、Hamming-wave)對地盤與樁基礎的影響,因為Hamming-wave是非等振幅類正弦波,較接近真實地震波形,反之,Sin-wave容易高估現地發生地震時的受震行為,同時比較不同的液化土層厚度在發生液化時樁基礎的受震反應。
    從試驗結果顯示: (1)土層中的加速度振幅由基盤傳至地表逐漸放大,但發生液化後,由於剪力波無法傳遞,所以加速度傳至地表面時會大幅縮小,而飽和試體在未發生液化前,與乾砂試體有接近的加速度放大效應;(2)發生土壤液化時,土層承受最大彎矩深度增加,表示土層因液化導致強度下降,需要發展至更深層的土壤才有足夠束制樁的強度;(3)在相同的輸入震動下,Sin-wave時的樁基礎承受彎矩大於Hamming-wave時的反應,且相對於液化層厚度,Sin-wave甚至是控制液化程度的主因;(4)液化土層厚度增加,樁身受震時的撓曲彎矩有微小增加,同時土層承受最大彎矩深度持續向下發展,震後的殘餘旋轉角也有增加,輸入震動為Sin-wave的變化量相較於Hamming-wave更顯著。(5)液化程度愈高,上部結構慣性力影響樁基礎範圍愈深。


    With a general awareness about environmental protection raises in Taiwan recent years, it has been attached that the way of wind energy are being substituted for non-renewable energy, like thermal power generation or nuclear power generation. Besides, offshore wind turbines has been developed on account of excellent wind resources in coastal areas of western Taiwan. However, Taiwan situates in Circum-Pacific Seismic Belt, therefore, the seabed in the western coastline of Taiwan is deposited with loose sandy soil that may be liquefied during earthquakes. The research results will give the reference to the mono-pile for offshore wind turbines. This study is based on the mono pile foundation of the German offshore wind turbine (Siemens SWT-4.0). This model uses two-stage scaling, the prototype size reduction to 35% of 1g model at first, and reduction to 80g scale model of centrifuge at second time. The pile tip is designed at the bottom of the model pile, and the bottom of the pile is free and not connected to the bottom of the test box. The test configuration compares the reaction of the pile foundation with the dry sand test and the saturated test when the soil liquefaction. At the same time, the effects of different input vibration waveforms (Sin-wave, Hamming-wave) on the ground and pile foundation are discussed, and compare the different liquefied soil thicknesses in the liquefaction of the pile foundation.
    According to the test results, the following conclusions can be drawn. (1) The acceleration in the soil layer is gradually amplified from the base plate to the surface, but it will decrease after liquefaction on the shear wave cannot be transmitted. (2) Produce the depth of soil layer with the maximum bending moment will increase after liquefaction. (3) When the pile foundation of the Sin-wave input motion is subjected to a bending moment greater than Hamming-wave at the same input amplitude. (4) The thickness of the liquefied soil layer increases, and the bending moment of the pile foundation is slightly increased during the earthquakes, generate the depth of soil layer with the maximum bending moment keep deepening, amount of change of the Sin-wave input motion is obvious to Hamming-wave. (5) The higher the degree of liquefaction, the deeper the inertial force of the superstructure to the pile foundation.

    摘要 i Abstract iii 目錄 v 圖目錄 viii 表目錄 xx 符號說明 xxi 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 1 1-3 研究方法 2 1-4 論文架構 2 第二章 文獻回顧 1 2-1 離心模型試驗原理 1 2-1-1 離心模擬原理 1 2-1-2 離心模型之基本相似律 1 2-2 土壤液化 5 2-3 單樁基礎於離心模型試驗與振動臺試驗之相關研究 6 2-4 樁基礎受震反應機制 12 2-5 風機結構自然頻率 16 第三章 試驗設備、試驗配置與試驗步驟 19 3-1 試驗儀器與相關設備 19 3-1-1 中央大學地工離心機 19 3-1-2 單軸向振動台 21 3-1-3 積層版剪力試驗箱 23 3-1-4 移動式霣降設備 24 3-1-5 各式量測工具 25 3-1-6 模型計測樁 27 3-2 試驗土樣 30 3-3 試驗準備步驟與流程 32 3-3-1 試驗前相關準備作業 32 3-3-2 試體製作 33 3-3-3 試體飽和作業 35 3-4 單樁基礎離心模型振動台試驗 35 3-5 風機單樁基礎離心模型設計 38 第四章 試驗結果與分析 43 4-1 試驗規劃 43 4-2 試驗結果 49 4-2-1 試驗D-6d-S之試驗結果 49 4-2-2 試驗D-3d-S之試驗結果 64 4-2-3 試驗W-3d-S之試驗結果 79 4-2-4 試驗W-3d-H之試驗結果 100 4-2-5 試驗W-6d-H之試驗結果 122 4-2-6 試驗W-6d-S之試驗結果 142 4-3 綜合討論 163 4-3-1 樁系統與土層自然頻率 163 4-3-2 震後樁身殘餘旋轉角 167 4-3-3 樁基礎周圍與自由土層地表沉陷 169 4-3-4 土層樁身彎矩 176 4-3-5 慣性力對樁基礎的影響 191 第五章 結論 200 參考文獻 202

    1. Tokimatsu, K., Suzuki, H. and Sato, M. “Effects of inertial and kinematic interaction on seismic behavior of pile with embedded foundation,” Soil Dynamics and Earthquake Engineering, Vol. 25, pp.753-762. (2005).
    2. Abdoun, T. and Dobry, R.D. “Evaluation of pile foundation response to lateral spreading,” Soil Dynamics and Earthquake Engineering, Vol. 25, pp.1051-1058. (2002).
    3. Raffaele De Risi, Subhamoy Bhattacharya, Katsuichiro Goda “Seismic performance assessment of monopile-supported offshore wind turbines using unscaled natural earthquake records,” Soil Dynamics and Earthquake Engineering, Vol. 109, pp.154-172. (2018).
    4. Amir M. Kaynia “Seismic considerations in design of offshore wind turbines,” Soil Dynamics and Earthquake Engineering, Vol. 124, pp.399-407. (2019).
    5. API, “Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design,” (2002).
    6. Cubrinovski, M., Kokusho, T. and Ishihara, K. “Interpretation from large-scale shake table tests on piles undergoing lateral spreading in liquefied soils,” Soil Dynamics and Earthquake Engineering, Vol. 26, pp.275-286. (2006).
    7. Damgaard M., Zania V., Andersen L.V., Ibsen L.B. “Effects of soil–structure interaction
    on real time dynamic response of offshore wind turbines on monopoles,” Engineering Structures, Vol. 75, pp.388-401. (2014).
    8. Arany L., Bhattacharya S., Macdonald J., Hogan S.J. “Design of monopiles for offshore
    wind turbines in 10 steps.” Soil Dynamics and Earthquake Engineering, Vol. 92, pp.126-152. (2017).

    9. Andersen, V., Vahdatirad, M.J., Sichani, M.T., Sørensen J.D. “Natural frequencies of wind turbines on monopile foundationsin clayey soils—A probabilistic approach.” Computers and Geotechnics, Vol. 43, pp.1-11. (2012).
    10. Djillali Amar Bouzida, Subhamoy Bhattacharya, Lalahoum Otsmane “Assessment of natural frequency of installed offshore wind turbines usingnonlinearfinite element model considering soil-monopile interaction.” Journal of Rock Mechanics and Geotechnical Engineering, Vol. 10, pp.333-346. (2018).
    11. Boulanger, R.W., Curras, C.J., Kutter, B.L., Wilson, D.W., Abghari, A. “Seismic soil-piles -tructure interaction experiments and analysis.” Journal Geotechnical and Geoenvironmental Engineering, Vol. 125, pp.750-9. (1999).
    12. Prowell, I., Elgamal, A., Lu, J. “Modeling the influence of soil structure interaction on
    the seismic response of a 5MW wind turbine.” Fifth international conference on recent advances in geotechnical earthquake engineering and soil dynamics. San Diego.(2010).
    13. Myungjae Lee , Kyung-Tae Bae , Il-Wha Lee and Mintaek Yoo ”Cyclic p-y Curves of Monopiles in Dense Dry Sand Using Centrifuge Model Tests” Applied Sciences 9(8):1641
    14. Arshi, H.S., Stone K.J.L., Vaziri, M., Newson, T.A., El-Marassi, M. ”Modelling of Monopile-Footing Foundation System for Offshore Structures in Cohesionless Soils” 18th International Conference on Soil Mechanics and Geotechnical Engineering,(2013)
    15. Yun Wook Choo, and Dongwook Kim “Experimental Development of the p-y Relationship for Large-Diameter Offshore Monopiles in Sands: Centrifuge Tests” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 142, pp. 04015058. (2016).
    16. Sam Austin , Sukhvarsh Jerath “Effect of soil-foundation-structure interaction on the seismic response of wind turbines.” Ain Shams Engineering Journal, Vol. 8, pp.323-331. (2017).

    17. 凃亦峻,「位於可液化砂土層中單樁基礎受震反應的離心模擬」,碩士論文,
    國立中央大學土木工程學系,中壢 (2011)。
    18. 林郁庭,「以離心模型模擬離岸風機單樁受反覆水平側推之p-y 曲線」,碩
    士論文,國立中央大學土木工程學系,中壢 (2013)。
    19. 呂振榮,「以動態離心試驗模擬可液化地盤中離岸風機單樁基礎之受震反應」,碩
    士論文,國立中央大學土木工程學系,中壢 (2014)。
    20. 呂昕澔,「以離心模型模擬離岸風機單樁受單向反覆水平側推行為」,碩士論文,國立中央大學土木工程學系,中壢 (2014)。
    21. 吳宇浩,「液化地盤群樁基礎地震反應之模擬」,碩士論文,國立中央大學土木工程學系,桃園 (2014)。
    22. 周廷韋,「以離心模型試驗擬基樁反覆抗壓及拉拔之行為」,碩士論文,國立中央大學土木工程學系,中壢 (2008)。
    23. 楊宗翰,「具不同上部結構之樁基礎受振行為」,碩士論文,國立中央大學土木工程學系,桃園 (2015)。
    24. 陳正興、黃俊鴻,基礎性能分析,地工技術叢書之十一,財團法人地工技術研究發展基金會(2016)。
    25. 中華民國內政部營建署,「建築技術規則」,中華民國 (2014)。
    26. 中華民國大地工程學會,「建築物基礎構造設計規範」,中華民國 (2001)。
    27. 陳正興、翁作新、陳家漢,「飽和砂土層中模型樁振動台試驗」,國家地震工程研究中心簡訊,第 70期,第1-2 頁(2009.6)。

    QR CODE
    :::