跳到主要內容

簡易檢索 / 詳目顯示

研究生: 魏士傑
Shih-Jie Wei
論文名稱: 振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應
指導教授: 鍾雲吉
Yun-Chi Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 100
中文關鍵詞: 垂直振動床離散元素法甜甜圈形顆粒體互鎖效應內部性質傳輸性質
外文關鍵詞: vibrating granular bed, DEM, particle shape, inter-locking effect, micro-scale analysis, convection mechanism
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以離散元素法(DEM)模擬類二維垂直振動床,模擬分為兩部分,第一部分模擬探討不同形狀粗糙度之甜甜圈形顆粒體在振動床中之流動行為,考慮的形狀包含由8個球形元素、9個球形元素、10個球形元素及11個球形元素組成的甜甜圈形顆粒,進而探討顆粒形狀對顆粒體在振動床內傳輸性質的影響,傳輸性質包括速度向量場、擾動速度分佈、粒子溫度、自我擴散係數、動能及無因次質量流率。在固定振動條件(振動頻率25Hz與無因次振動加速度為18)下,四種甜甜圈顆粒體各項傳輸性質除自我擴散係數外,均呈現11球形元素>10球形元素>9球形元素>8球形元素的特性,可知較少球元素顆粒體因幾何形狀粗糙度較大,互鎖效應(inter-locking effect)較強,較易影響顆粒體的運動行為。甜甜圈形顆粒體因幾何外形,轉動運動特別明顯,且互鎖效應對於旋轉運動的影響較大,使得轉動方向擴散係數、轉動方向擾動速度及轉動動能之差異皆比x方向與y方向明顯得多。第二部分模擬探討振動床不同相位角下顆粒體的傳輸性質及內部性質,進而了解振動床的迴流機制與不同相位角下球形顆粒體的流動行為,內部性質包括配位數、應力、接觸力強度、啟動摩擦因子及組構張量。平均配位數的結果顯示,顆粒接觸頻率較高區域均在顆粒堆中央部分,而在自由表面顆粒自由彈跳,顆粒體間的接觸頻率較低。由剪應力分佈圖可證實振動床下降過程,邊壁處產生左正右負之剪力帶,造成左側顆粒體反鐘向迴流,右側顆粒體順鐘向迴流,而在振動床上升過程,則是在容器底部產生左負右正之剪力帶。摩擦啟動因子分佈結果顯示,顆粒體在左右邊壁及底部的摩擦啟動因子較大,但未達到滑動摩擦,而顆粒堆中央部分摩擦啟動因子較小。組構張量分佈結果顯示,振動床底部、中央部分及左右邊壁部份,皆為在振動床上升階段時,顆粒間接觸力較接近y方向,在振動床下降階段時,顆粒間接觸力較接近x方向。綜觀各個內部性質(配位數、應力、摩擦啟動因子及接觸力強度)可發現,在平衡位置至波峰之間多為極值發生處,可知該處附近為振動床上升受力最大。


    The purpose of the study is to investigate the convection behaviour of spherical and non-spherical particles in quasi-2D vibrating beds by using discrete element method (DEM). The study includes two parts: one is the effect of particle shape on convection behavior (Part I), and the other is the micro exploration of convection mechanism (Part II). In Part I, four kinds of donut-shaped particles used in the study are respectively composed of 8, 9, 10 and 11 sub-spheres by adopting multi-sphere method, and these donut-shaped particles have the same mass and moment of inertia despite different outlines. The numerical results reveal that the transport properties increase with the increase of sub-sphere number, especially in rotational behaviour. This is attributed to the fact that the surface roughness increases with the decreasing sub-sphere number, leading to stronger inter-locking behaviour between particles. In Part II, the convection behavior of a spherical granular assembly is explored from the micro-scale point of view, and a vibrating cycle, including ascending and descending processes, is divided into 12 phases. The DEM results corroborate that the shear bands occur at the regions near the sidewalls during the descending process, whereas take place at the bottom base during the ascending process. It is the shear bands that drive the granular assembly circulate in the vibrating bed. The central part of the vibrating granular bed shows higher coordination number but smaller contact force than the sidewalls and bottom base. In addition, the mobilized friction factor at the sidewalls and bottom base are larger than that in the central part. The fabric analysis also reveals that the contact orientation approaches the vertical direction during the ascending process, but the horizontal direction during the descending process. The micro-scale analysis further points out that, during an entire cycle, the particles collide the most drastically between the balanced position and the wave crest in upward motion.

    摘要 i Abstract ii 目錄 iii 表格目錄 v 附圖目錄 vi 第一章 緒論 1 1.1 顆粒體介紹 1 1.2 顆粒體在振動床內之迴流現象 1 1.3 文獻回顧 2 1.4 研究動機 6 1.5 研究架構 7 第二章 研究方法 8 2.1 離散元素法之介紹 8 2.1.1 離散元素法之架構 8 2.1.2 三維剛體運動方程式 8 2.1.3 接觸力模型 11 2.1.4 時間步 13 2.2 振動床之傳輸性質 13 2.2.1 局部平均速度及局部擾動速度 13 2.2.2 局部粒子溫度 14 2.2.3 擾動速度分佈 14 2.2.4 擴散係數 15 2.2.5 整體平均動能 16 2.2.6 無因次質量流率 16 2.3 振動床內部微觀物理量 17 2.3.1 平均配位數 17 2.3.2 應力 17 2.3.3 摩擦啟動因子 19 2.3.4組構張量 19 2.4 模型設計及DEM參數決定方法 20 2.4.1 模型設計 20 2.4.2 模擬設置 21 2.4.3 顆粒材料性質量測 21 2.4.3.1 掉落實驗 21 2.4.3.2 三點滑動摩擦實驗 22 2.4.3.3 安息角實驗 22 第三章 結果與討論 23 3.1 探討顆粒形狀對顆粒體在振動床中流動行為的影響 23 3.2 振動床迴流機制及內部性質之探討 26 第四章 結論 35 參考文獻 37

    [1] Keiko M. Aoki, Nobuyasu Ito, Effect of size polydispersity on granular materials, Physical Review E 54 (1996).
    [2] S.S. Hsiau, M.H. Wu, C.H. Chen, Arching phenomena in a vibrated granular bed, Powder Technology 192 (2009) 311-317.
    [3] Y.C. Chung, H.H. Liao, S.S. Hsiau, Convection behavior of non-spherical particles in a vibrating bed: Discrete element modeling and experimental validation, Powder Technology 237 (2013) 53-66.
    [4] Y.C. Chung, S.S. Hsiau, H.H. Liao, J.Y. Ooi, An improved PTV technique to evaluate the velocity field of non-spherical particles, Powder Technology 202 (2010) 151-161.
    [5] S.S. Hsiau, C.H. Chen, Granular convection cells in a vertical shaker, Powder Technology 111 (2000) 210-217.
    [6] C.H. Tai, S.S. Hsiau, Dynamic behaviors of powders in a vibrating bed, Powder Technology 139 (2004) 221-232.
    [7] Milica Medved, Damien Dawson, Heinrich M. Jaeger, Sidney R. Nagel, Convection in horizontally vibrated granular material, Chaos 9 (1999) 691.
    [8] 戴其璜,「振動床運動機制之研究」國立中央大學機械工程學系流體力學組碩士班碩士論文,民國90年。
    [9] R. Brito and R. Soto, Competition of Brazil nut effect, buoyancy, and inelasticity induced segregation in a granular mixture, Eur. Phys. J. Special Topics 179 (2009) 207-219.
    [10] C.C. Liao, M.L. Hunt, S.S. Hsiau, S.H. Lu, Investigation of the effect of a bumpy base on granular segregation and transport properties under vertical vibration, Physics of Fluids 26 (2014) 073302.
    [11] C.C. Liao, S.S. Hsiau, C.S. Wu, Experimental study on the effect of surface roughness of the intruder on the Brazil nut problem in a vertically vibrated bed, Physics Review E86 (2012) 061316.
    [12] Takashi Matsushima, Ching S. Chang, Quantitative evaluation of the effect of irregularly shaped particles in sheared granular assemblies, Granular Matter (2011) 13:269–276.
    [13] A.A. Peña, R. García-Rojo, H.J. Herrmann, Influence of particle shape on sheared dense granular media, Granular Matter (2007) 9:279–291.
    [14] 吳俊輝,「非球形顆粒體在振動床中流動行為之研究」國立中央大學機械工程學系流體力學組碩士班碩士論文,民國99年。
    [15] Joanna Wiącek, Marek Molenda, Józef Horabik, Jin Y. Ooi, Influence of grain shape and intergranular friction on material behavior in uniaxial compression: Experimental and DEM modeling, Powder Technology 217 (2012) 435-442.
    [16] Matweb, Chi Mei Polylac PA-707 ABS, http://www.matweb.com/, accessed on April 25, 2013.
    [17] P.A. Cundall, O.D.L. Strack, Discrete numerical model for granular assemblies, Geotechnique 29 (1979) 47-65.
    [18] Y. Tsuji, T. Tanaka, and T. Ishiba, Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe, Powder Technology 73 (1992) 239-250.
    [19] Y. Tsuji, T. Kawaguchi, T. Tanaka, Discrete particle simulation of two-dimensional fluidized bed, Powder Technology 77 (1993) 79-87.
    [20] K. L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, UK, 1985.
    [21] C. O'Sullivan and J. D. Bray, Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme, Engineering Computations 21 (2004) 278-303.
    [22] C.S. Chang, and Y. Liu, Stress and fabric in granular material, Theoretical and Applied Mechanics Letters 3(2013) 021002.
    [23] Itasca Consulting Group Inc., PFC3D- Particle Flow Code in three Dimensions, Minneapolis, USA, 2010.
    [24] J.F. Favier, M. H. Abbaspour-Fard, M. Kremmer and A. O. Raji, Shape representation of axisymmetrical non-spherical particles in discrete element simulation using multi-element model particles, Engineering Computations 16 (1999) 467-480.
    [25] J.B. Knight, External boundary and internal shear bands in granular convection, Physical Review E 55 (1997) 6016-6023.
    [26] S.S. Hsiau, P.C. Wang, C.H. Tai, Convection cells segregation in vibrated granular bed, AIChE journal 48 (2002) 1430.

    QR CODE
    :::