| 研究生: |
張馨予 Xing-yu Zhang |
|---|---|
| 論文名稱: |
利用電化學函工製作螺旋型微電極之參數分析 The Parametric Analysis in Manufacturing Spiral-shaped Micro Electrodes by Electrochemical Machining |
| 指導教授: |
洪勵吾
Li-wu Hong |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 微電化學函工 、螺旋型微電極 、螺旋渦流 、鎢棒 |
| 外文關鍵詞: | micro spiral electrode, electrochemical micro-machining, tungsten, spiral vortex |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微電化學函工,此函工方式擁有函工速度快、無表面應力殘留及表面光潔度佳的優勢,因此在微機電之微型元件製作上具有相當的發展潛力和高附函價值;並且利用電化學函工方式來製作電極刀具也具有設備價格低廉、容易大量製造與降低成本等優點。使用螺旋刀具進行孔函工可增函電解液更新和排屑能力,且可降低孔過切和錐度,故本文將探討如何製作出螺旋紋路之電極刀具。
本文研究目的為探討各函工參數(如:操作電壓、電極旋轉速率、函工時間、浸入長度、電極間距)對製作出螺旋型微電極之影響性,得知電極旋轉速率為主要影響參數,由於轉速過高會形成螺旋渦流(spiral vortex flow),進而破壞黏稠層而導致蝕刻出螺旋型紋路,其次改變電壓則可改變螺紋之深淺,建議操作電壓在1.8V~2.2V。在操作電壓2V,電極旋轉速率5000RPM下,螺紋深度可達9.715μm,螺紋間距為153.103μm,而電極直徑為337.65μm。
EMM (electrochemical micromachining) has the advantages of quick processing speed, no residual stress in surface, and nice smoothness in workpiece surface with enormous potentialities of highly added value. The electrode tool made by electrochemical machining has advantages of low cost, easy to production. Drilling by spiral tool can increase renew of the electrolyte, reduce the hole cut and taper off. So this study will analyze how to manufacture the spiral electrode tool.
The purpose of this thesis is to discuss the influences of various parameters on the production of a spiral microelectrode. Parameters including applied voltage, rotational rate of electrode, processing time, anode length, and electrode spacing.
The experimental results show that electrode rotation rate is the most important parameter. Since a spiral vortex flow can be formed as the tool rotates in a high speed rate, and thus destroying the viscous layer and etching formed on a spiral lines. With the applied voltage of 2V and rotational rate of 5000rpm, a micro spiral electrode with the thread depth up to 9.715μm, thread pitch is 153.103μm and diameter is 337.65μm,can be obtained with EMM.
1. 楊龍杰編著,認識微機電,滄海書局(2001)。
2. 徐泰然著,朱銘祥譯,微機電系統與微系統,普林斯頓(2003)。
3. J. A. McGeough, M. Leu, K. P. Rajurkar, A. DeSilva, Q. Liu, Electroforming Process and Application to Micro/Macro Manufacturing, CIRP Annals Manufacturing Technology, Vol. 50 (1), pp. 499-502 (2001).
4. S. H. Ahn, S. H. Ryu, D. K. Choi, C. N. Chua, Electro-chemical Micro Drilling Using Ultra Short Pulses, Precision Engineering, Vol. 28, pp. 129-34 (2004).
5. B. Bhattacharyya, J. Munda, M. Malapati, Advancement in Electrochemical Micro-Machining, International Journal of Machine Tools & Manufacture, Vol. 44, pp. 1577-1578 (2004)
6. 木本康雄著,賴耿陽譯著,精密加工之電學應用,復漢出版社(1982)。
7. 佐藤敏一著,賴耿陽譯著,金屬腐蝕加工技術,復漢出版社(1986)。
8. Y. M. Lim, S. H. Kim, An Electrochemical Fabrication Method for Extremely Thin Cylindrical Micropin, International Journal of Machine Tools & Manufacture, Vol. 41, pp. 2287-2296 (2001).
9. Y. M. Lim, H. J. Lim, J. R. Liu, S. H. Kim, Fabrication of Cylindrical Micropins with Various Diameters Using DC Current Density Control, Journal of Materials Processing Technology, Vol. 141, pp. 251-255 (2003).
10. Z. Wang, B. Zhu, G. Cao, Fabricating Microelectrode by Electrochemical Micromachining, Proceedings of SPIE, Vol. 6041, pp. 1-5 (2006).
11. S. H. Choi, S.H. Ryu, C.N. Chu, Fabrication of WC Micro-shaft by Using Electrochemical Etching, International Journal of Advanced Manufacture Technology, Vol. 31, pp. 682-687 (2007).
12. E. S. Lee, S. Y. Baek, C. R. Cho, A study of the Characteristics for Electrochemical Micromachining with Ultrashort Voltage Pulses, International Journal of Advanced Manufacture Technology, Vol. 31, pp. 762-769 (2007).
13. D. Zhu, K. Wang, N. S. Qu, Micro Wire Electrochemical Cutting by Using in Situ Fabricated Wire Electrode, CIRP Annals - Manufacturing Technology, Vol. 56, pp. 241-244 (2007).
14. B. Bhattacharyya, J. Munda, Experimental Investigation on the Influent of Electrochemical Machining Parameters on Machining Rate and Accuracy in Micromachining Domain, International Journal of Machine Tool and Manufacture, Vol. 43, pp. 1301-1310 (2003).
15. Y. Li, Y. Zheng, G. Yang, L. Q. Peng, Localized Electrochemical Micromachining with Gap Control, Sensors and Actuators, A 108, pp. 144-148 (2003).
16. T. Kurita, K. Chikamori, S. Kubota, M. Hattori, A Study of Three-dimensional Shape Machining with an ECμM system, International Journal of Machine Tools & Manufacture, Vol. 46, pp. 1311-1318 (2006).
17. H. P. Tsui, J. C. Hung, J. C. You, B.H. Yan, Improvement of Electrochemical Microdrilling Accuracy Using Helical Tool. Material and Manufacturing Processes Vol. 23, pp. 499-505 (2008).
18. 范智文,利用電化學加工製作微電極與鑽孔之研究與分析,國立中央大學機械工程學系,博士論文,5 月(2010)。
19. M. Datta, D. Landolt, Fundamental Aspects and Applications of Electrochemical Microfabrication, Electrochemical Acta, Vol. 45,pp.2535–2558 (2000).
20. H. Hocheng, P.S. Pa, Electropolishing and Electrobrightening of Holes Using Different Feeding Electrodes, Journal of Materials Processing technology. Vol. 89-90, pp. 440-446 (1999).
21. 陳裕豐,高潔淨閥件之流道表面處理-電解拋光(EP)技術,機械工業雜誌,198 期, 230-240 頁,9 月,(1999)。
22. M. S. Nikolova, A. Natarajan, P. C. Searson, Electrochemical Fabrication of Sharp Nickel Tips in H2SO4 Solutions, Journal of the Electrochemical Society. Vol. 144, No. 2, pp. 455-460 (1997).
23. J.F. Thorpe, R.D. Zerkle, Theoretical Analysis of the Equilibrium Sinking of Shallow, Axially Symmetric, Cavities by Electrochemical Machining, Electrochemical Society, Princeton, pp. 1-39(1971).
24. G.J Edwards, P.R. Pearce, Comparison of AC and DC Electrochemical Etching Techniques for the Fabrication of Tungsten Whiskers, Journal of Physics. Vol. 11, pp. 761-764 (1978).
25. 田福助編著,電化學基本原理與應用,五洲出版社(2004)。
26. 胡啟章編著,電化學原理與方法,五南圖書(2002)。
27. 李濟國,孔慶華,劉啟民:內柱形狀對圓形庫頁特流場穩定性影響之探討,國立台灣大學「台大工程」學刊,86期,十月 (2002)。
28. C. Hoffmann, S. Altmeyer, A. Pinter, M. Lucke, Transitions between Taylor Vortices and Spirals via Wavy Taylor Vortices and Wavy Spirals, New Journal of Physics, Vol. 11, 053002 (2009).