跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林宣瑋
Syuan-Wei Lin
論文名稱: Characterizing films synthesis of high-𝜿 hydrogenated graphene in low-temperature capacitively-coupled acetylene plasma chemical vapor deposition system
指導教授: 溫偉源
Wei-Yen Woon
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 104
中文關鍵詞: 高介電常數石墨烯氫化石墨烯鐵電材料電漿輔助化學氣相沉積電容耦合式電漿
外文關鍵詞: High-k material, Graphene, Hydrogenated graphene, Ferroelectric material, Plasm enhanced vapor deposition system, Capacitively couple plasma
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於現今半導體工業金屬氧化閘極的微縮製程,傳統使用的介電材料如二
    氧化矽,因為其介電常數所造成的漏電問題,取而代之的高介電常數材料的開發變得極為重要。相較於無機物的高介電常數材料,有機材料的低成本、製程多元以及物化性質豐富的特性吸引了眾多學者紛紛投入此研究領域。在西元 2022 年,Kim 等人已成功合成非晶向氫化石墨稀並測試其介電性質成為一有潛力的高介電常數有機材料。借鑑其研究,本實驗室以氫化石墨稀出發,參考理論模擬結果,希望透過電容耦合式化學輔助電漿汽相沉積系統,於乙炔低溫電漿中製造出氫化石墨稀,並透過電漿瓦數改變其晶格構造及薄膜組成,深入研究氫化石墨稀的形成過程以及其介電特性。透過光致發光光譜、拉曼光譜、傅立葉紅外轉換光譜以及金屬-絕緣體-金屬(MIM)之電容量測,本研究成功在低溫乙炔電漿中製造高介電常數(K=32.3)的氫化石墨稀薄膜,更在其電性上觀察到已被理論模擬證實之鐵電材料的性質。


    In this decade, high-k material has been widely developed because of its necessary toward narrowing transistor gate length. Unlike traditional silicon dioxide, organic material has drawn lots of attentions due to its low-cost and unique physiochemical properties. In these two years, hydrogenated amorphous graphene has been successfully fabricated as a high-k dielectric material while graphene is a well-known semimetal. Furthermore, there are lots of researches
    showed hydrogenated graphene has special properties like bandgap tuning or ferromagnetism. In this report, we want to follow hydrogenated amorphous graphene step to find if hydrogenated graphene can be fabricated as a high-k dielectric material by Raman, Metal-Insulator-Metal (MIM) C-V measurement and FTIR analysis

    Content 摘要...............................................................................................................................II Abstract........................................................................................................................III Figure List...................................................................................................................VII Chapter 1 Introduction ...............................................................................................1 Chapter 2 Motivation and Background.......................................................................2 2-1 Motivation..............................................................................................2 2-2 High Dielectirc Constant Material..........................................................3 2-3 Graphene ...............................................................................................7 2-4 Hydrogenated graphene .......................................................................13 2-4.1 Multiferroic hydrogenated graphene...........................................16 2-5 Chemical vapor deposition (CVD)........................................................18 2-5.1 CVD process .................................................................................18 2-5.2 Advantages and disadvantages ....................................................20 2-6 Plamsa..................................................................................................21 2-6.1 Plasma generation ........................................................................21 2-6.2 Plasam category ...........................................................................22 2-6.3 Plasma characteristics in CVD.....................................................26 2-7 RF-PECVD .............................................................................................28 IV 2-7.1 Inductively (ICP)&Capacitively Coupled Plasma (CCP)............28 2-7.2 Comparison with thermal CVD ...................................................29 2-7.3 Acetylene/Argon plasma PECVD graphene process...................30 2-8 Sacnning Electron Microscopy(SEM) ...................................................32 2-8.1 SEM principle ..............................................................................33 2-8.2 Application on graphene ..............................................................35 2-9 Raman spectrocsopy............................................................................35 2-9.1 Raman scattering..........................................................................36 2-9.2 Raman spectroscopy on graphene................................................43 2-10 FTIR spectroscopy ................................................................................49 2-10.1 FTIR Principle .............................................................................49 2-10.2 ATR-FTIR....................................................................................52 2-11 Optical Emission Spectroscopy(OES) ...................................................53 Chapter 3 Experiment set-up and methods .............................................................54 3-1 PECVD...................................................................................................54 3-1.1 CCP-PECVD setup .........................................................................54 3-1.2 Film synthesis...............................................................................55 3-1.3 Film transfer method...................................................................58 3-2 Plasma Monitoring...............................................................................60 V 3-3 Film treatments and measurements....................................................61 3-3.1 SEM ..............................................................................................61 3-3.2 Raman spectrum..........................................................................61 3-31.3 Electircal properties.....................................................................62 3-3.4 AFM measurement ......................................................................63 3-3.5 ATR-FTIR measurement..............................................................63 Chapter 4 Result and discussion...............................................................................64 4-1 Plasma characterizing ..........................................................................64 4-2 Dielectric behavior...............................................................................79 4-3 Discussion............................................................................................88 Chapter 5 Conclusion................................................................................................91 References ................................................................................................................92

    [1] Alias, R., 2013, 'Structural and Dielectric Properties of Glass – Ceramic
    Substrate with Varied Sintering Temperatures', in B. Ertuğ (ed.), Sintering
    Applications, IntechOpen, London. 10.5772/54037.
    [2] A. K. Jonscher, "The 'universal' dielectric response. I," in IEEE Electrical
    Insulation Magazine, vol. 6, no. 2, pp. 16-22, March-April 1990, doi:
    10.1109/57.50801.
    [3] Dong-Ok Kim, Hyo-Ki Hong, Dong-Bum Seo, Tran Nam Trung, Chan-Cuk
    Hwang, Zonghoon Lee, Eui-Tae Kim, Novel high-k gate dielectric properties of
    ultrathin hydrocarbon films for next-generation metal-insulator-semiconductor
    devices, Carbon, Volume 158, 2020, Pages 513-518, ISSN 0008-6223,
    [4] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim,
    “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, no. 1, pp.
    109–162, 2009.
    [5] “Vibrations in sp2 Nanocarbons,” Raman Spectroscopy in Graphene Related
    Systems. pp. 53–72, 31-Jan-2011.
    [6] R. Beams, L. G. Canc, and L. Novotny, “Raman characterization of defects and
    dopants in graphene,” J. Phys. Condens. Matter, vol. 27, p. 083002, 2015.
    [7] Yazdi, G.; Iakimov, T.; Yakimova, R.Epitaxial Graphene on SiC: A Review of
    Growth and Characterization. Crystals 2016, 6 (5), 53
    [8] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183-
    191
    [9] T.O. Terasawa, K. Saiki, Growth of graphene on Cu by plasma enhanced
    chemical vapor deposition, Carbon 50 (2012) 869-874.
    [10] Y.S. Kim, J.H. Lee, Y.D. Kim, S.-K. Jerng, K. Joo, E. Kim, J. Jung, E. Yoon, Y.D.
    Park, S. Seo, S.-H. Chun, Methane as an effective hydrogen source for singlelayer graphene synthesis on Cu foil by plasma enhanced chemical vapor
    deposition, Nanoscale 5 (2013) 1221-1226.
    [11] D.A. Boyd, W.-H. Lin, C.-C. Hsu, M.L. Teague, C.-C. Chen, Y.-Y. Lo, W.-Y.
    Chan, W.-B. Su, T.-C. Cheng, C.-S. Chang, C.-I. Wu, N.-C. Yeh, Single-step
    deposition of high-mobility graphene at reduced temperatures, Nat. Commun. 6
    (2015) 1e8.
    93
    [12] C.-C. Yen, Y.-C. Chang, H.-C. Tsai, W.-Y. Woon, Nucleation and growth
    dynamics of graphene grown through low power capacitive coupled radio
    frequency plasma enhanced chemical vapor deposition, Carbon 154 (2019) 420-
    427.
    [13] I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, S. Smirnov, Role
    of hydrogen in chemical vapor deposition growth of large single-crystal
    graphene, ACS Nano 5 (2011) 6069-6076.
    [14] J.L. Qi, W.T. Zheng, X.H. Zheng, X. Wang, H.W. Tian, Relatively low
    temperature synthesis of graphene by radio frequency plasma enhanced chemical
    vapor deposition, Appl. Surf. Sci. 257 (2011) 6531-6534.
    [15] M.M. Lucchese, F. Stavale, E.H.M. Ferreira, C. Vilani, M.V.O. Moutinho,
    R.B. Capaz, C.A. Achete, A. Jorio, Quantifying ion-induced defects and Raman
    relaxation length in graphene, Carbon 48 (2010) 1592e1597.
    [16] L.G. Cancado, A. Jorio, E.H.M.M. Ferreira, F. Stavale, C.A. Achete, R.B.
    Capaz, M.V.O.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, L.G.
    Cançado, A. Jorio, E.H.M.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz,
    M.V.O.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Quantifying
    defects in graphene via Raman spectroscopy at different excitation energies,
    Nano Lett. 11 (2011) 3190-3196.
    [17] A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S.
    Novoselov, C. Casiraghi, Probing the nature of defects in graphene by Raman
    spectroscopy, Nano Lett. 12 (2012) 3925e3930. [20] A. Eckmann, A. Felten, I.
    Verzhbitskiy, R. Davey, C. Casiraghi, Raman study on defective graphene:
    effect of the excitation energy, type, and amount of defects, Phys. Rev. B. 88
    (2013) 1-11.
    [18] A. Mohanta, B. Lanfant, M. Asfaha, M. Leparoux, Methane dissociation
    process in inductively coupled Ar/H2/CH4 plasma for graphene nano-flakes
    production, Appl. Phys. Lett. 110 (2017) 1-5
    [19] Abhilash Harpale, Marco Panesi, and Huck Beng Chew,” Plasma-graphene
    interaction and its effects on nanoscale patterning.“ phys. Rev. B 93,
    035416 – Published 11 January 2016
    [20] Reece, Timothy. (2007). Characterization of Metalferroelectric-InsulatorSemiconductor Structures Based on Ferroelectric Langmuir-Blodgett
    94
    Polyvinylidene Fluoride Copolymer Films for Nondestructive Random Access
    Memory Applications.
    [21] Hoffmann, M., Fengler, F.P.G., Herzig, M. et al. Unveiling the double-well
    energy landscape in a ferroelectric layer. Nature 565, 464–467 (2019).
    https://doi.org/10.1038/s41586-018-0854-z
    [22] H. Li and G. Subramanyam, "Capacitance of thin-film ferroelectrics under
    different drive signals," in IEEE Transactions on Ultrasonics, Ferroelectrics,
    and Frequency Control, vol. 56, no. 9, pp. 1861-1867, September 2009,
    doi: 10.1109/TUFFC.2009.1262.
    [23] Shin-ichi Amma, Jiawei Luo, Carlo G. Pantano, Seong H. Kim,
    Specular reflectance (SR) and attenuated total reflectance (ATR) infrared (IR)
    spectroscopy of transparent flat glass surfaces: A case study for soda lime float
    glass,Journal of Non-Crystalline Solids, Volume 428, 2015, Pages 189-196,
    ISSN 0022-3093,
    [24] Jo Hsueh Lee, Cheng-Hung Cheng, Bo-Rong Liao and Shi-Hsin Lin Chem.
    “Multiferroic hydrogenated graphene bilayer” Chem. Phys., 2020,22, 7962-7968
    [25] Axel Eckmann, Alexandre Felten, Artem Mishchenko, Liam Britnell, Ralph
    Krupke, Kostya S. Novoselov, and Cinzia Casiraghi Nano Letters 2012 12 (8),
    3925-3930 DOI: 10.1021/nl300901a
    [26] Whitener, Keith. (2018). Review Article: Hydrogenated graphene: A user’s
    guide. Journal of Vacuum Science & Technology A. 36. 05G401.
    10.1116/1.5034433.
    [27] C. Lin et al., Nano Lett. 15, 903 (2015)
    [28] B. R. Matis, J. S. Burgess, F. A. Bulat, A. L. Friedman, B. H. Houston, and J. W.
    Baldwin, ACS Nano 6, 17 (2012)
    [29] M. Zhao, H. Xiao, S. Chen, T. Hu, J. Jia and H. Wu, RSC Advances, 2018, 8,
    13148–13153
    [30] M. Zhao, H. Xiao, S. Chen, T. Hu, J. Jia and H. Wu, RSC Advances, 2018, 8,
    13148–13153
    [31] Min Hyuk Park and Cheol Seong Hwang 2019 Rep. Prog. Phys. 82 124502
    [32] Phys. Chem. Chem. Phys., 2020,22, 7962-7968
    [33] H. O. Pierson, Handbook of Chemical Vapor Deposition, Noyes Publications,
    Park Ridge (1992)
    95
    [34] X. Chen, et al., Large area CVD growth of graphene, Synthetic Met. (2015)
    [35] Beams, R.; Gustavo Can� ado, L.; Novotny, L.Raman Characterization of
    Defects and Dopants in Graphene. J. Phys. Condens. Matter 2015, 27 (8)
    [36] Tao Xu, Litao Sun, 5 - Structural defects in graphene, Editor(s): Jan Stehr, Irina
    Buyanova, Weimin Chen, In Woodhead Publishing Series in Electronic and
    Optical Materials, Defects in Advanced Electronic Materials and Novel Low
    Dimensional Structures, Woodhead Publishing, 2018, Pages 137 160, ISBN
    9780081020531
    [37] Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.;
    Capaz, R. B.; Achete, C. A.; Jorio, A.Quantifying Ion-Induced Defects and
    Raman Relaxation Length in Graphene. Carbon N. Y. 2010, 48 (5), 1592–1597.
    [38] Eckmann, Axel & Felten, Alexandre & Mishchenko, Artem & Britnell, Liam &
    Krupke, Ralph & Novoselov, Kostya & Casiraghi, Cinzia. (2012). Probing the
    Nature of Defects in Graphene by Raman Spectroscopy. Nano letters. 12. 3925-
    30. 10.1021/nl300901a.
    [39] Keith E. Whitener, Woo K. Lee, Paul M. Campbell, Jeremy T. Robinson, Paul E.
    Sheehan, Chemical hydrogenation of single-layer graphene enables completely
    reversible removal of electrical conductivity, Carbon, Volume 72, 2014, Pages
    348-353, ISSN 0008-6223,
    [40] Tang J, Chen Q, Xu L, Zhang S, Feng L, Cheng L, Xu H, Liu Z, Peng R. Graphene
    oxide-silver nanocomposite as a highly effective antibacterial agent with speciesspecific mechanisms. ACS Appl Mater Interfaces. 2013 May;5(9):3867-74. doi:
    10.1021/am4005495. Epub 2013 Apr 29. PMID: 23586616.
    [41] J. Mater. Chem., 2012,22, 10457-10459
    [42] FTIR Spectroscopy - Theory and Fundamentals | JASCO (jascoinc.com)
    [43] Ausili, Alessio & Sánchez, Marina & Gómez-Fernández, Juan. (2015).
    Attenuated total reflectance infrared spectroscopy: A powerful method for the
    simultaneous study of structure and spatial orientation of lipids and membrane
    proteins. Biomedical Spectroscopy and Imaging. 4. 159-70. 10.3233/BSI150104.
    [44] Shin-ichi Amma, Jiawei Luo, Carlo G. Pantano, Seong H. Kim,
    Specular reflectance (SR) and attenuated total reflectance (ATR) infrared (IR)
    spectroscopy of transparent flat glass surfaces: A case study for soda lime float
    96
    glass, Journal of Non-Crystalline Solids, Volume 428, 2015, Pages 189-196,
    ISSN 0022-3093,
    [45] https://www.agilent.com/en/support/atomic-spectroscopy/inductively-coupledplasma-optical-emission-spectroscopy-icp-oes/icp-oes-instruments/icp-oes-faq
    [46] Alias, R., 2013, 'Structural and Dielectric Properties of Glass – Ceramic
    Substrate with Varied Sintering Temperatures', in B. Ertuğ (ed.), Sintering
    Applications, IntechOpen, London. 10.5772/54037

    QR CODE
    :::