| 研究生: |
王品傑 Ping-Chieh Wang |
|---|---|
| 論文名稱: |
以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統 RF Front-end System Integration by Single-Pole-Double-Throw BPF |
| 指導教授: |
林祐生
Yo-Shen Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 射頻前端系統 、單刀雙擲帶通濾波器 、單刀雙擲 |
| 外文關鍵詞: | SPDT, Single-Pole-Double-Throw, SPDT BPF, RF Front-end System |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究主軸為具高整合性射頻前端收發系統設計。首先提出新式單刀雙擲帶通濾波器架構,藉由帶通濾波器與單刀雙擲切換器的整合式設計,進而改善傳統分時多工射頻通訊系統必備之切換器與濾波器於串接時,各級間不匹配之損耗,並達到縮小電路尺寸之目的。本研究係以耦合微帶線帶通濾波器出發,引入二極體負載達到切換功能,透過首段耦合線長度的控制,再直接利用T 接面將兩濾波器並接,即可得到具單刀雙擲功能之帶通濾波器。本架構設計關鍵在首段耦合線長度,後端電路實現方式可任意選用,提供設計者高自由度,例如可進一步將單刀雙擲帶通濾波器結合平衡至不平衡轉換器,大幅提高整合度。再者,運用濾波器可匹配至複數阻抗之特性,將低雜訊放大器輸入級匹配電路設計為具切換功能之帶通濾波器,而可將單刀雙擲切換器、帶通濾波器、低雜訊放大器三者整合於單一電路元件中,對於射頻前端電路的微小化,效能提昇,與組裝複雜度降低均有直接助益。
本研究透過高整合度的電路架構及簡潔的設計流程,可整合多種射頻前端功能方塊於同一電路中,目前已達成整合部份射頻前端主被動電路之設計目標,同時也為未來進一步的改良提供更多可能性。
In this study, highly integrated RF frontend designs are presented. First, the novel bandpass single-pole-double-throw (SPDT) RF switch design that combines the functions of bandpass filter (BPF) and SPDT is proposed. As a result, both the circuit size and mismatch losses associated with the cascade of these two components in the RF frontend of conventional time-division-duplex system can be reduced. The proposed SPDT BPF design starts from a microstrip parallel-coupled BPF loaded with a p-i-n diode at the end of first coupled-line. In this way, the BPF becomes switchable. By properly chosen the length of first coupled-line, two switchable BPFs can be directly connected to form a SPDT BPF. In addition, since only the first coupled-line is determined by the switch function, the subsequent filter stages can be arbitrarily designed such them more functions can be integrated and more design freedom is obtained. For instance, the integration of balun function to the bandpass SPDT switch is demonstrated, such that the level of integration is further improved. Moreover, the design technique of BPF with complex load is applied to the matching network design of a Low Noise Amplifier (LNA). In this way, a SPDT switch, two BPF’s, and a LNA are all integrated in a single circuit. It will help reducing the circuit size, mismatch losses, and complexity in module for RF frontend design.
The proposed SPDT BPF features compact circuit structure and simple design flow, and is capable of further integration of other circuit components. The integration of several active and passive function blocks in the RF frontend has been achieved. The proposed circuit structure and design method also paves the way for further improvement in the near future.
[1]K.-H. Lee, Z. Jin, and K.-H. Koo, “High linearity SPDT switch for dual band wireless LAN applications,” in Proc. Asia-Pacific Microwave Conf., Dec. 2005.
[2]C.-Y. Ou, C.-Y. Hsu, H.-R. Lin, H.-R. Chuang , “A high-isolation high-linearity 24-GHz CMOS T/R switch in the 0.18-μm CMOS process,” in Proc. Eur. MIC Conf. 2009
[3]J. Kim, W. Ko, S.-H. Kim, J. Jeong, Y. Kwon, “A high-performance 40–85 GHz MMIC SPDT switch using FET-Integrated transmission line Structure, ” IEEE Microwave Wireless Compon. Lett., vol. 13, no. 12, pp.505-507, Dec. 2003
[4]K.-Y. Lin, W.-H. Tu, P.-Y. Chen, H.-Y. Chang, H. Wang, R.-B. Wu, “Millimeter-wave MMIC passive HEMT switches using traveling-wave concept,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 8, pp.1798-1808, Aug. 2004.
[5]Y. A. Atesal, B. Cetinoneri, and G. M. Rebeiz, “ Low-loss 0.13-μm CMOS 50 – 70 GHz SPDT and SP4T switches, ” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp.43-46 ,June 2009
[6]Y. Tsukahara, H. Amasuga, S. Goto, T. Oku, and T. Ishikawa , “ 60GHz high isolation SPDT MMIC switches using shunt pHEMT resonator , ” IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2008, pp. 1541–1544.
[7]Y.-S. Lin, P.-Y. Chang, Y.-S. Hsieh, "Compact electronically switchable parallel-coupled microstrip bandpass filter with wide stopband," IEEE Microwave Wireless Compon. Lett., vol. 18, no.4, pp.254-256, April. 2008
[8]K.-Y. Lin, Y.-J. Wang, D.-C. Niu, H. Wang, “Millimeter-wave MMIC single-pole-double-throw Passive HEMT switches using impedance-transformation networks, ” IEEE Trans. Microwave Theory Tech., vol. 51, no. 4, pp. 1076-1085, Apr. 2003.
[9]S.-F. Chang, J.-L. Chen, H.-W. Kuo, H.-Z. Hsu , “A filter synthesis method applied to millimeter-wave distributed switch design,” in Proc. Eur. Microwave Conf. 2003
[10]R.-B. Lai, S.-F. Chao, Z.-M. Tsai, J. Lee, H. Wang, “ Topology analysis and design of passive HEMT millimeter-wave multiple-port switches,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 7, pp. 1545-1554, Jul. 2008.
[11]S.-F. Chao, C.-H. Wu, Z.-M. Tsai, H. Wang, C.-H. Chen, “Electronically switchable bandpass filters using loaded stepped-impedance resonators,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 12, pp. 41931-4201, Dec. 2006.
[12]S.-F. Chao, C.-C. Kuo, Z.-M. Tsai, H. Wang, “A 40-GHz MMIC SPDT bandpass filter integerated switch,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2007, pp. 483–486.
[13]S.-F. Chao, C.-C. Kuo, Z.-M. Tsai, K.-Y. Lin, H. Wang , “ 40-GHz MMIC SPDT and multiple-port bandpass filter-integrated switches, ” IEEE Trans. Microwave Theory Tech., vol. 55, no. 3, pp. 2691-2699, Dec. 2007.
[14]Z.-M. Tsai, Y.-S. Jiang, J. Lee, K.-Y. Lin, H. Wang, “Analysis and design of bandpass single-pole–double-throw FET filter-integrated switches,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 8, pp. 1601-1610, Aug. 2008.
[15]J. Lee, R.-B. Lai, K.-Y. Lin, C.-C. Chiong, and H. Wang, “A Q-band low loss reduced-size filter-integrated SPDT switch using 0.15μm- MHEMT technology,” IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2008, pp. 551–554.
[16]J. Lee, Z.-M. Tsai, H. Wang, “A band-pass filter-integrated switch using field-effect transistors and its power analysis,” IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2006, pp. 768–771.
[17]游秋雯, “以多重耦合線實現多功能帶通濾波器” 碩士論文, 國立中央大學, 2010.
[18]鍾育軒, “微波帶通低雜訊放大器設計” 碩士論文, 國立中央大學, 2009.
[19]S.-B. Cohn, “Parallel-coupled transmission-line-resonator filters,” IEEE Trans. Microwave Theory Tech., vol. 6, no. 2, pp. 223-231, Apr. 1958.
[20]S.-C. Lin, T.-N. Kuo, Y.-S. Lin, C.-H. Chen, “Novel coplanar-waveguide bandpass filters using loaded air-bridge enhanced capacitors and broadside-coupled transition structures for wideband spurious suppression,” IEEE Trans. Microwave Theory Tech., vol.54, no.8, pp. 3359-3369, Aug. 2006.
[21]J. S. Hong, M. J. Landcaster, Microstrip Filters for RF/Microwave Application, John Wiley & Sons, Inc., 2001.
[22]D. M. Pozar, Microwave Engineering, 3rd Edition, John Wiley & Sons, Inc., 2005.
[23]G. L. Matthaei, L. Yong and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, McGraw-Hill, Inc., 1980.
[24]G. Gonzalez, Microwave Transistor Amplifier Analysis and Design, Second Edition, Prentice Hall, New Jersey, 1997.
[25]C.-L. Tsai and Y.-S. Lin, “Analysis and design of new single-to-balanced multi-coupled line bandpass filters using low temperature co-fired ceramic technology,” IEEE Trans. Microwave Theory Tech., vol. 56, no.12, pp. 2902-2912, Dec. 2008.
[26]Y.-S. Lin, C.-C. Liu, K.-M. Li, C. H. Chen, “Design of an LTCC tri-band transceiver module for GPRS mobile applications,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 12, pp. 2718-2724, Dec. 2004.
[27]SKYWORKS, SMP-1345, Very Low Capacitance, Plastic Packaged Silicon PIN Diodes ,Available: http://www.skyworksinc.com/uploads/documents/200046H.pdf