| 研究生: |
陳銘鋒 Ming-feng Chen |
|---|---|
| 論文名稱: |
熱氧化退火法製備氧化銅半導體奈米線及其性質之研究 Synthesis, characterization, and properties of CuO nanowires by thermal oxidation annealing |
| 指導教授: |
鄭紹良
Shao-liang Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 氧化銅 、奈米線 、熱氧化退火法 |
| 外文關鍵詞: | CuO, cupric oxide, nanowire, thermal oxidation annealing |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中結合電鍍銅製程與熱氧化退火法成功在(001)矽基材上製備出大面積氧化銅奈米線陣列。並且針對氧化銅奈米線的晶體結構、成長動力學、光學能隙、電性以及表面潤濕行為做進一步的研究。
由經熱氧化退火後之電鍍銅膜試片,可發現大面積且準直的奈米線生成於矽晶基材上。以TEM、SAED及HRTEM鑑定分析所生成之奈米線,經鑑定可發現所有的奈米線皆為單晶且具單斜之晶體結構,且其並不具固定之成長方向。利用EDS針對奈米線作元素分析後可證實所製備之奈米線為純氧化銅奈米線。為進一步探討以熱氧化退火反應之反應動力學,本實驗設計於不同退火溫度及時間下進行氧化銅奈米線之生成反應。經一系列系統性的實驗後發現,氧化銅奈米線長度與退火時間呈拋物線之關係,此結果顯示氧化銅奈米線生成為一擴散控制的反應機制,且經測量氧化銅奈米線於不同溫度下之生成速率,並藉由阿瑞尼士方程式可推導得氧化銅奈米線生成反應之活化能為174.2 kJ/mol。在本研究中亦提出氧化銅奈米線的可能生成機制是由於氧化層之應力釋放結合銅原子在奈米線中經缺陷擴散所共同作用下之結果。
以PL光譜測量分析後顯示,本實驗以熱氧化退火法所製備之氧化銅奈米線能隙約為 1.79 eV。此外,由氧化銅奈米線電性量測結果發現溫度對氧化銅電性表現之影響十分顯著,且隨著溫度升高而電阻下降的趨勢,符合一般半導體材料之特性。而針對氧化銅奈米線試片表面性質做水滴接觸角量測實驗,發現其呈現異常變化現象。對剛製備完成之氧化銅奈米線試片其會隨著時間由親水性漸漸轉變為疏水性,且經水潤濕過後的氧化銅奈米線試片,其與水滴之接觸角會顯著提高。
We report here the study of synthesis and characterization of large-area vertically-aligned CuO nanowires by direct air oxidation of electrodeposited Cu film onto silicon substrate. The crystal structures, formation kinetics, band-gap energy, electrical property, and surface wetting behaviors of the CuO nanowires produced have been investigated.
After thermal oxidation of the electrodeposited Cu films on Si simples, high-density vertically-aligned nanowires were found to form on the surface of the oxidized samples. From TEM, SAED, and HRTEM analyses, all the nanowires synthesized were single crystalline with a monoclinic structure and their axial orientations were random. The quantitative EDS analysis demonstrated that those nanowires produced were CuO nanowires. By measuring the length of CuO nanowires with different annealing temperature, the length of CuO nanowires were found to increase parabolically with time. The result clearly indicates that the growth of the CuO nanowires is diffusion-controlled. The activation energy for the formation of CuO nanowires was readily derived from an Arrhenius plot to be about 174.2 kJ/mol. The possible mechanisms for the growth of CuO nanowires are discussed in the context of the stress relaxation from the oxidation layer and the Cu diffusion diffusing along the defects in nanowires.
From the photoluminescense measurements, the band-gap energy of synthesized CuO nanowires was found to be about 1.79 eV. The resistance of CuO nanowires was measured to decrease with increasing temperature, which showed the characteristic behavior of semiconducting material. In addition, the surface-wetting properties of the CuO nanowires produced were evaluated by water contact angle measurements. The abnormal changes of the wetting behaviors from hydrophilic to hydrophobic were observed.
[1] Z. L. Wang, “Nanowires and Nanobelts:Materials, Properties and Devices,” vol. 1&2, 2003, Springer.
[2] S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-Temperature Transistor Based on a Single Carbon Nanotube,” Nature 393 (1998) 49-52.
[3] J. Li, Q. Ye, A. Cassell, H. T. Ng, R. Stevens, J. Han, and M. Meyyappan, “Bottom-Up Approach for Carbon Nanotube Interconnects,” Appl. Phys. Lett. 82 (2003) 2491-2493.
[4] J. H. Fendler, “Self-Assembled Nanostructured Materials,” Chem. Mater. 8 (1996) 1616-1624.
[5] M. S. Arnod, P. Avouris, Z. W. Pan, and Z. L. Wang, “Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts,” J. Phys. Chem. B 107 (2003) 659-663.
[6] K. S. Kim, H. S. Lee, J. A Yang, M. H. Jo, and S. K. Hahn, “The Fabrication, Characterization and Application of Aptamer-Functionalized Si-Nanowire FET Biosensors,” Nanotechnology 20 (2009) 235501 1-6.
[7] W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid Nanorod-Polymer Solar Cells,” Science 295 (2002) 2425-2427.
[8] M. Mandal, S. K. Ghosh, S. Kundu, K. Esumi, and T. Pal, “UV Photoactivation for Size and Shape Controlled Synthesis and Coalescence of Gold Nanoparticles in Micelles,” Langmuir 18 (2002) 7792-7797.
[9] N. R. Jana, Y. Chen, and X. Peng, “Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach,” Chem. Mater. 16 (2004) 3931-3935.
[10] X. H. Zhang, S. J. Chua, A. M. Yong, H. Y. Yang, S. P. Lau, S. F. Yu, X. W. Sun, L. Miao, M. Tanemura, and S. Tanemura, “Exciton Radiative Lifetime in ZnO Nanorods Fabricated by Vapor Phase Transport Method,” Appl. Phys. Lett. 90 (2007) 013107 1-3.
[11] M. Biswas, E. McGlynn, M. O. Henry, M. McCann, and A. Rafferty, “Carbothermal Reduction Vapor Phase Transport Growth of ZnO Nanostructures:Effects of Various Carbon Sources,” J. Appl. Phys. 105 (2009) 09436 1-6.
[12] E. Barrena, X. N. Zhang, B. N. Mbenkum, T. Lohmueller, T. N. Krauss, M. Kelsch, P. A. V. Aken, J. P. Spatz, and H. Dosch, “Self-Assembly of Phthalocyanine Nanotubes by Vapor-Phase Transport,” CHEMPHYSCHEM 9 (2008) 1114-1116.
[13] K. S. K. Varadwaj, K. Seo, J. In, P. Mohanty, J. Park, and B. Kim, “Phase-Controlled Growth of Metastable Fe5Si3 Nanowires by a Vapor Transport Method,” J. Am. Chem. Soc. 129 (2007) 8594-8599.
[14] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, “Nucleation and Growth of Si Nanowires from Silicon Oxide,” Phys. Rev. B 58 (1998) R16 24-26.
[15] D. P. Yu, C. S. Lee, I. Bello, X. S. Sun, Y. H. Tang, G. W. Zhou, Z.G. Bai, Z. Zhang, and S.Q. Feng, “Synthesis of Nano-Scale Silicon Wires by Excimer Laser Ablation at High Temperature,” Solid State Commun. 105 (1997) 403-407.
[16] W. K. Maser, E. Mu?oz, A. M. Benito, M. T. Mart?nez, G. F. de la Fuente, Y. Maniette, E. Anglaret, and J. L. Sauvajol, “Production of High-Density Single-Walled Nanotube Material by a Simple Laser-Ablation Method,” Chem. Phys. Lett. 292 (1998) 587-593.
[17] Z. Liu, D. Zhang, S. Han ,C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, “Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires,” Adv. Mater. 15 (2003) 1754-1757.
[18] C. H. Hsiao, S. J. Chang, S. B. Wang, S. P. Chang, T. C. Li, W. J. Lin, C. H. Ko, T. M. Kuan, and B. R. Huang, “ZnSe Nanowire Photodetector Prepared on Oxidized Silicon Substrate by Molecular-Beam Epitaxy,” J. Electrochem. Soc. 156 (2009) J73-J76.
[19] J. Thangala, S. Vaddiraju, S. Malhotra, V. Chakrapani, and M. K. Sunkara, “A Hot-Wire Chemical Vapor Deposition (HWCVD) Method for Metal Oxide and Their Alloy Nanowire Arrays,” Thin Solid Films 517 (2009) 3600-3605.
[20] J. B. Baxtera and E. S. Aydil, “Metallorganic Chemical Vapor Deposition of ZnO Nanowires from Zinc Acetylacetonate and Oxygen,” J. Electrochem. Soc. 156 (2009) H52-H58.
[21] J. Lao, J. Huang, D. Wang, and Z. Ren, “Self-Assembled In2O3 Nanocrystal Chains and Nanowire Networks,” Adv. Mater. 16 (2004) 65-69.
[22] E. Zhang, Y. Tang, Y. Zhang, and C. Guo, “Synthesis and Photoluminescence Property of Silicon Carbon Nanowires Synthesized by the Thermal Evaporation Method,” Physica E 41 (2009) 655-659.
[23] M. X. Qiu, Z. Z. Ye, J. G. Lu, H. P. He, J. Y. Huang, L. P. Zhu, and B. H. Zhao, “Growth and Properties of ZnO Nanorod and Nanonails by Thermal Evaporation,” Appl. Surf. Sci. 252 (2009) 3972-3976.
[24] H. B. Xu, H. Z. Chen, W. J. Xu, and M. Wang, “Fabrication of Organic Copper Phthalocyanine Nanowire Arrays via a Simple AAO Template-Based Electrophoretic Deposition,” Chem. Phys. Lett. 412 (2005) 294-298.
[25] J. C. Hulteen and C. R. Martin, “A General Template-Based Method for the Preparation of Nanomaterials,” J. Mater. Chem. 7 (1997) 1075-1087.
[26] H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. L. Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, and U. G?sele, “Template-Assisted Large-Scale Ordered Arrays of ZnO Pillars for Optical and Piezoelectric Applications,” Small 2 (2006) 561-568.
[27] J. Zhao, Z. G. Jin, T. Li, and X. X. Liu, “Nucleation and Growth of ZnO Nanorods on the ZnO-Coated Seed Surface by Solution Chemical Method,” J. Eur. Ceram. Soc. 26 (2006) 2769-2775.
[28] A. Y. Zhang, Q. Ma, M. K. Lu, G. W. Yu, Y. Y. Zhou, and Z. F. Qiu, “Copper-Indium Sulfide Hollow Nanospheres Synthesized by a Facile Solution-Chemical Method,” Cryst. Growth Des. 8 (2008) 2402-2405.
[29] Z. L. Jin, X. J. Zhang, Y. X. Li, S. B. Li, and G. X. Lu, “5.1% Apparent Quantum Efficiency for Stable Hydrogen Generation over Eosin-Sensitized CuO/TiO2 Photocatalyst under Visible Light Irradiation,” Catal. Commun. 8 (2007) 1267-1273.
[30] Q. L. Bao, C. M. Li, L. Liao, H. B. Yang, W. Wang, C. Ke, Q. L. Song, H. F. Bao, T. Yu, K. P. Loh, and J. Guo, “Electrical Transport and Photovoltaic Effects of Core-Shell CuO/C60 Nanowire Heterostructure,” Nanotechnology 20 (2009) 065203 1-8.
[31] G. Zou, H. Li, D. Zhang, K. Xiong, C. Dong, and Y. Qian, “Well-Aligned Arrays of CuO Nanoplatelets,” J. Phys. Chem. B 110 (2006) 1632-1637.
[32] J. Li, J. W. Mayer, and E. G. Colgan, “Oxidation and Protection in Copper and Copper Alloy Thin Films,” J. Appl. Phys. 70 (1991) 2820-2827.
[33] P. Poizot, C. J. Hung, M. P. Nikiforov, E. W. Bohannan, and J. A. Switzer, “An Electrochemical Method for CuO Thin Film Deposition from Aqueous Solution,” Electrochem. Solid-State Lett. 6 (2003) C21-C25.
[34] T. Ito, H. Yamaguchi, K. Okabe, and T. Masumi, “Singe-Crystal Growth and Characterization of Cu2O and CuO,” J. Mater. Sci. 33 (1998) 3555-3566.
[35] T. Mahalingam, J. S. P. Chitra, J. P. Chu, H. Moon, H. J. Kwon, and Y. D. Kim, “Photoelectrochemical Solar Cell Studies on Electroplated Cuprous Oxide Thin Films,” J. Mater. Sci. Mater. Electron. 17 (2006) 519-523.
[36] A. O. Musa, T. Akomolafe, and M. J. Carter, “Production of Cuprous Oxide, a Solar Cell Material, by Thermal Oxidation and a Study of Its Physical and Electrical Properties,” Sol. Energy Mater. Sol. Cells 51 (1998) 305-316.
[37] K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G. K. Paul, and T. Sakurai, “Thin Film Deposition of Cu2O and Application for Solar Cells,” Sol. Energy 80 (2006) 715-722.
[38] A. E. Rakhshani, “Preparation, Characteristics and Photovoltaic Properties of Cuprous Oxide - a Review,” Solid-State Electron. 29 (1986) 7-17.
[39] M. Kaura, K. P. Muthea, S. K. Despandeb, S. Choudhuryc, and J. B. Singh, “Growth and Branching of CuO Nanowires by Thermal Oxidation of Copper,” J. Cryst. Growth 289 (2006) 670-675.
[40] S. Anadan and S. H. Yang, “Emergent Methods to Synthesize and Characterize Semiconductor CuO Nanoparticles with Various Morphologies – an Overview,” J. Exp. Nanosci. 2 (2007) 23-56.
[41] M. A. Dar, Y. S. Kim, W. B. Kim, J. M. Sohn, and H. S. Shin, “Structural and Magnetic Properties of CuO Nanoneedles Synthesized by Hydrothermal Method,” Appl. Surf. Sci. 254 (2008) 7477-7481.
[42] W. X. Zhang, S. X. Ding, Z. H. Yang, A. P. Liu, Y. T. Qian, S. P. Tang, and S. H. Yang, “Growth of Novel Nanostructured Copper Oxide (CuO) Films on Copper Foil,” J. Cryst. Growth 291 (2006) 479-484.
[43] P. Raksa, A. Gardchareon, T. Chairuangsri, P. Mangkorntong, N. Mangkorntong, and S. Choopun, “Ethanol Sensing Properties of CuO Nanowires Prepared by an Oxidation Reaction,” Ceram. Int. 35 (2009) 649-652.
[44] Y. S. Kim, I. S. Hwang, S. J. Kim, C. Y. Lee, and J. H. Lee, “CuO Nanowire Gas Sensors for Air Quality Control in Automotive Cabin,” Sens. Actuators B 135 (2008) 298-303.
[45] P. Samarasekara, N. T. R. N. Kumara, and N. U. S. Yapa, “Sputtered Copper Oxide (CuO) Thin films for Gas Sensor Devices,” J. Phys. Condens. Matter 18 (2006) 2417-2420.
[46] S. Rackauska, A. G. Nasibulin, H. Jiang, Y. Tian, V. I. Kleshch, J. Sainio, E. D. Obraztsova, S. N. Bokova, A. N. Obraztsov, and E. I. Kauppinen, “A Novel Method for Metal Oxide Nanowire Synthesis,” Nanotechnology 20 (2009) 165603 1-8.
[47] C. T. Hsieh, J. M. Chen, H. H. Lin, and H. C. Shih, “Field Emission from Various CuO Nanostructures,” Appl. Phys. Lett. 83 (2003) 3383-3385.
[48] S. C. Yeon, W. Y. Sung, W. J. Kim, S. M. Lee, H. Y. Lee, and Y. H. Kim, “Field Emission Characteristics of CuO Nanowires Grown on Brown-Oxide-Coated Cu Films on Si Substrates by Conductive Heating in Air,” J. Vac. Sci. Technol. B 24 (2006) 940-944.
[49] J. Y. Xiang, J. P. Tu, X. H. Huang, and Y. Z. Yang, “A Comparison of Anodically Grown CuO Nanotube Film and Cu2O Film as Anodes for Lithium ion Batteries,” J. Solid State Electrochem. 12 (2008) 941-945.
[50] S. Grugeon, S. Laruelle, R. H. Urbina, L. Dupont, P. Poizot, and J. M. Tarascon, “Particle Size Effects on the Electrochemical Performance of Copper Oxide toward Lithium,” J. Electrochem. Soc. 148 (2001) A285-A292.
[51] L. B. Chen, N. Lu, C. M. Xu, H. C. Yu, and T. H. Wang, “Electrochemical Performance of Polycrystalline CuO Nanowires as Anode Material for Li Ion Batteries,” Electrochim. Acta 54 (2009) 4198-4201.
[52] Y. L. Liu, L. Liao, J. C. Li, and C. N. Pan, “From Copper Nanocrystalline to CuO Nanoneedle Array:Synthesis, Growth Mechanism, and Properties,” J. Phys. Chem. C 111 (2007) 5050-5056.
[53] S. Sumikura, S. Mori, S. Shimizu, H. Usami, and E. Suzuki, “Photoelectrochemical Characteristics of Cells with Dyed and Undyed Nanoporous P-Type Semiconductor CuO Electrodes,” J. Photochem. Photobiol. A 194 (2008) 143-147.
[54] S. Anandan, X. G. Wen, and S. H. Yang, “Room Temperature Growth of CuO Nnanorod Arrays on Copper and their Application as a Cathode in Dye-Sensitized Solar Cells,” Mater. Chem. Phys. 93 (2005) 35-40.
[55] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, “Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-Ion Batteries,” Nature 407 (2000) 496-499.
[56] X. P. Gao, J. L. Bao, G. L. Pan, H. Y. Zhu, P. X. Huang, F. Wu, and D. Y. Song, “Preparation and Electrochemical Performance of Polycrystalline and Single Crystalline CuO Nanorods as Anode Materials for Li Ion Battery,” J. Phys. Chem. B 108 (2004) 5547-5551.
[57] Y. K. Su, C. M. Shen, H. T. Yang, H. L. Li, and H. J. Gao, “Controlled Synthesis of Highly Ordered CuO Nanowire Arrays by Template-Based Sol-Gel Route,” Trans. Nonferrous Met. Soc. China 17 (2007) 783-786.
[58] R. Yang and L. Gao, “Novel Way to Synthesize CuO Nanocrystals with Various Morphologies,” Chem. Lett. 33 (2004) 1194-1195.
[59] C. K. Xu, Y. K. Liu, G. D. Xu, and G. H. Wang, “Preparation and Characterization of CuO Nanorods by Thermal Decomposition of CuC2O4 Precursor,” Mater. Res. Bull. 37 (2002) 2365-2372.
[60] C. H. Lo, T. T. Tsung, L. C. Chen, C. H. Su, and H. M. Lin, “Fabrication of Copper Oxide Nanofluid Using Submerged Arc Nanoparticle Synthesis System (SANSS),” J. Nanopart. Res. 7 (2005) 313-320.
[61] X. G. Wen, W. X. Zhang, and S. H. Yang, “Synthesis of Cu(OH)2 and CuO Nanoribbon Arrays on a Copper Surface,” Langmuir 19 (2003) 5898-5903.
[62] F. R. N. Nabarro and P. J. Jackson, “Growth of Crystal Whiskers, in Growth and Perfection of Crystal Growth,” R. H. Doremus, B. W. Roberts, and D. Turnbull, pp. 13-120, 1958, Wiley.
[63] X. Jiang, T. Herricks, and Y. Xia, “CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air,” Nano Lett. 2 (2002) 1333-1338.
[64] C. H. Xu , C. H. Woo , and S. Q. Shi, “Formation of CuO Nanowires on Cu Foil,” Chem. Phys. Lett. 399 (2004) 62-66.
[65] J. Szekely, J. W. Evans, and Y. S. Hong, “Gas-Solid Reactions,” pp. 8-64, 1976, Academic.
[66] R. S. Wanger and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4 (1964) 89-90.
[67] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic Growth and Characterization of Gallium Nitride Nanowires,” J. Am. Chem. Soc. 123 (2001) 2791-2798.
[68] J. C. Lee, W. J. Lee, S. H. Han, T. G. Kim, and Y. M. Sung, “Synthesis of Hybrid Solar Cells Using CdS Nanowire Array Grown on Conductive Glass Substrates,” Electrochem. Commun. 11 (2009) 231-234.
[69] S. Y. Li, C. Y. Lee, and T. Y. Tseng, “Copper-Catalyzed ZnO Nanowires on Silicon (100) Grown by Vapor-Liquid-Solid Process,” J. Cryst. Growth 247 (2003) 357-362.
[70] S. S. Brenner and G. W. Sears, “Mechanism of Whisker Growth - III Nature of Growth Sites,” Acta Met. 4 (1956) 268-270.
[71] Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of Semiconducting Oxides,” Science 291 (2001) 1947-1949.
[72] R. Takagi, “Growth of Oxide Whiskers on Metals at High Temperature,” J. Phys. Soc. Jpn. 12 (1957) 1212-1218.
[73] J. Wanger, “Photoluminescense and Excitation Spectroscopy in Heavily Doped N- and P-Type Silicon,” Phys. Rev. B 29 (1984) 2002-2009.
[74] P. Goldberg, “Luminescence of Inorganic Solids,” 1966, Academic.
[75] C. Wagner, “Beitrag zur Theorie des Anlaufvorgangs,” Z. Phys. Chem. B 21 (1933) 25-41.
[76] Y. Z. Hu, R. Sharangpani, and S. P. Tay, “Kinetic Investigation of Copper Film Oxidation by Spectroscopic Ellipsometry and Reflectometry,” J. Vac. Sci. Technol. A 18 (2000) 2527-2532.
[77] C. Zhong, Y. M. Jiang, Y. F. Luo, B. Deng, L. Zhang, and J. Li, “Kinetics Characterization of the Oxidation of Cu Thin Films at Low Temperature by Using Sheet Resistance Measurement,” Appl. Phys. A 90 (2008) 263–266.
[78] D. Wu, Q. Zhang, and M. Tao,“LSDA+U Study of Cupric Oxide:Electronic Structure and Native Point Defects”, Phys. Rev. B 73 (2006) 235206 1-6.
[79] J. A. Sartell, R. J. Stokes, S. H. Bendel, T. L. Johnson, and C. H. Li, “Institute of Metals Division - Role of Oxide Plasticity in the Oxidation Mechanism of Pure Copper,” Trans. Metall. Soc. AIME 215 (1959) 420-424.
[80] J. D. Eshelby, “A Tentative Theory of Metallic Whisker Growth,” Phys. Rev. 91 (1953) 755-756.
[81] D. A. Voss, E. P. Butler, and T. E. Mitchell, “The Growth of Hematite Blades during the High Temperature Oxidation of Iron,” Metall. Trans. A 13 (1982) 929-935.
[82] R. Nakamura, D. Tokozakura, H. Nakajima, J. G. Lee, and H. Mori, “Hollow Oxide Formation by Oxidation of Al and Cu Nanoparticles,” J. Appl. Phys. 101 (2007) 074303 1-7.
[83] R. Nakamura and H. Nakajima, “Structural Stability of Hollow Oxide Nanoparticles at High Temperatures,” J. Phys. Conf. Ser. 165 (2009) 012072 1-4.
[84] R. Nakamura, D. Tokozakura, J. G. Lee, H. Mori, and H. Nakajima, “Shrinking of Hollow Cu2O and NiO Nanoparticles at High Temperatures,” Acta Mater. 56 (2008) 5276-5284.
[85] M. Komatsu and H. Mori, “In Situ HVEM Study on Copper Oxidation Using an Improved Envirmental Cell,” J. Electron Microsc. 54 (2005) 99-107.
[86] S. K. Bose, S. K. Mitra, and S. K. Roy, “Effect of Short-Circuiting on the Oxidation Kinetics of Copper and its Doped Varieties in the Temperature Range of 523-1073 K,” Oxid. Met. 46 (1996) 73-107.
[87] H. H. Lin, C. Y. Wang, H. C. Shih, J. M. Chen, and C. T. Hsieh, “Characterizing Well-Ordered CuO Nanofibrils Synthesized through Gas-Solid Reaction,” J. Appl. Phys. 95 (2004) 5889-5895.
[88] 陳慶緒, 呂紹和, 孫祥育, “氧化銅奈米桿的製備與應用,” 奈米通訊 15 (2008) 27-30.
[89] H. Wang, J. Z. Xu, J. J. Zhu, and H. Y. Chen, “Preparation of CuO Nanoparticles by Microwave Irradiation,” J. Cryst. Growth 244 (2002) 88-94.