| 研究生: |
洪寶淑 Bao-Shue Hong |
|---|---|
| 論文名稱: |
互動式多重解析度模型編輯技術 Interactive Multiresolution Editing on Arbitrary Triangulated Models |
| 指導教授: |
曾定章
Din-chang Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 模型簡化 、多重解析度模型編輯 、非規則三角網格模型 、多重解析度 、模型編輯 |
| 外文關鍵詞: | multiresolution editing, arbitrary meshes, decimation |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究主要是探討如何應用多重解析度的特性來做三維模型的編輯。本研究而所要的編輯對象是三角網格模型 (triangulated meshes),此模型可以為非規則性的三角網格。我們的編輯方法主要有兩個部份,第一部份是建立我們所選取編輯區域的多重解析度表示法 (由精細到粗糙的階層式網格),第二部份是計算每兩個階層式網格間的差異性 (也就是多重解析度模型的高頻資訊)。當我們在粗糙的網格上做變更時,系統會由粗糙往精細的方向逐層更改模型,並將每兩層網格間的差異性加回去,這樣就確保最後的結果不會遺失掉太多的高頻資訊。
在我們的系統中,使用者可以方便的選擇要編輯的區域,而且所輸入的模型只要是三角網格模型就可以,不需要任何前置處理。
In this paper, we proposed a multiresolution model editing approach applying on unstructured triangulated meshes. The proposed approach is an extension application of multiresolution modeling. We build a multiresolution representation for a triangulated mesh and then modify the mesh without pre-processing on the given mesh. The proposed approach consists of three components : (i) fine-to-coarse hierarchy, (ii) discrete fairing, and (iii) details encoding. The fine-to-coarse hierarchy is used to build a multiresolution representatation for a selected region on a mesh. The difference between two adjacent hierarchical levels of the multiresolution is obtained and recorded by the discrete fairing and details encoding. We modify a coarser mesh and then construct the modified fineset-resolution mesh based on the recorded information.
In our system, a user can select an arbitrary region consisting of triangles for modification with the multiresolution modeling approach. We can preserve the detail information of the global shape during the modification without any special basis functions or complicated methods.
[1]Celniker, G. and D. Gossard, “Deformable curve and surface finite elements for free-form shape design,” in Proc. SIGGRAPH ’91, Las Vegas, NV, July 28 — Aug. 2, 1991, pp. 257-265
[2]Ciampalini, A., P. Cignoni, C. Montani, and R. Scopifno, Multiresolution Decimation based on Global Error, Tech. Report C96-021, CNUCE-C.N.R., Pisa, Italy, July, 1996.
[3]Farin, G. Curves and Surfaces for CAGD, 3rd ed., Academic Press, NY, 1993.
[4]Finkelstein, A. and D. H. Salesin, “Multiresolution curves,” in Proc. SIGGRAPH ’94, Orlando, Florida, Jul. 24-29, 1994, pp.261-268.
[5]Forsey, D. R. and R. H. Bartels, “Hierarchical B-spline refinement,” Computer Graphics, Vol.22, pp.205-212, No. 4, 1988.
[6]Forsey, D. and D. H. Wong, Multiresolution Surface Rreconstruction for Hierarchical B-splines, Tech. Rep., University of British Columbia, 1995.
[7]Garland, M., Quadric-Based Polygon Surface Simplification, Tech. Report CMU-CS-99-105, Computer Science, Carnegie Mellon Univ., May 1999.
[8]Gortler, S. J. and M. F. Cohen, “Hierarchical and variational geometric modeling with wavelets,” in Proc. Symposium on Interactive 3D Graphics ‘95, Monterey, CA, April 9-12, 1995, pp.35-42.
[9]Guskov, I., P. Schröder, and W. Sweldens, “Multiresolution signal processing for meshes,” in Proc. SIGGRAPH ’99, Los Angeles, California, Aug. 8-13, 1999, pp.325-334.
[10]Halstead, M., M. Kass, and T. DeRose, "Efficient, fair interpolation using Catmull-Clark surfaces" in Proc. SIGGRAPH ’93, Anaheim, CA, August 2-6, 1993, pp.35-44.
[11]Hoppe, H. “Progressive meshes,” in Proc. SIGGRAPH ’96, New Orleans, Louisiana, Aug. 4 - 9, 1996, pp.99-108.
[12]Hoschek, J. and D. Lasser, Fundamentals of Computer Aided Geometric Design, A. K. Peters, 1993.
[13]Kobbelt, L., S. Campagna, and H.-P. Seidel, “Interactive multi-resolution modeling on arbitrary meshes,” in Proc. SIGGRAPH ’98, Orlando, Florida, July 19-24, 1998, pp.105-114.
[14]Kobbelt, L., J. Vorsatz, and H.-P. Seidel, “Multiresolution hierarchies on unstructured triangle meshes,” Computational Geometry , Vol.14, Issue 1-3, pp5-24, 1999.
[15]Lee, S., “Interactive multiresolution editing of arbitrary meshes,” Computer Graphics Forum of Proc. Eurographics ’99, Vol.18, pp.73-82.
[16]Lousbery, M., T. DeRose, and J. Warren, “Multiresolution analysis for surfaces of arbitrary topological type,” ACM Trans. on Graphics, Vol.16, No.1, pp.34-73, 1997.
[17]Moreton, H. and C. Séquin, “Functional optimization for fair surface design,” in Proc. SIGGRAPH ’92, Chicago, IL, July 27-31, 1992, pp.167-176.
[18]Pulli, K. and M. Lounsbery, Hierarchical Editing and Rendering of Subdivision Surfaces, Tech. Report UW-CSE-97-04-07, Dept. of CS&E, University of Washington, Seattle, WA, 1997.
[19]Rossignac, J. and P. Borrel, “Multiresolution 3D approximations for rendering complex scenes,” in Geometric modeling in Computer Graphics: Methods and Application, Falcidieno, B., Kunii T.L. (eds), Springer Verlag, 1993, pp.455-465.
[20]Schröder, P. and D. Zorin, Eds., Subdivision for Modeling and Animation, Course Notes, ACM SIGGRAPH, 2000.
[21]Schroeder, W. J., J. A. Zarge, and W. E. Lorensen, “Decimation of triangle meshes,” in Proc. SIGGRAPH ’92, Chicago, IL, July 27-31, 1992, pp.65-70.
[22]Taubin, G., “A signal processing approach to fair surface design,” in Proc. SIGGRAPH ’95, Los Angeles, California, Aug.6 - 11, 1995, pp.351-358.
[23]Welch, W. and A. Witkin, “Variational surface modeling,” in Proc. SIGGRAPH ’92, Chicago, IL, July 27-31, 1992, pp.157-166.
[24]Welch, W. and A. Witkin, “Free-form shape design using triangular surfaces,” in Proc. SIGGRAPH ’94, Orlando, FL, July 24-29, 1994, pp.247-256.
[25]Zorin, D., P. Schröder, and W. Sweldens, “Interpolating subdivision for meshes with arbitrary topology,” in Proc. SIGGRAPH ’96, New Orleans, Louisiana, Aug. 4 - 9, 1996, pp.189-192.
[26]Zorin, D., P. Schröder, and W. Sweldens, “Interactive multiresolution mesh editing,” in Proc. SIGGRAPH ’97, Los Angeles, California, Aug. 3-8, 1997, pp.259-268.