| 研究生: |
官愛蓮 Ai-Lian Guan |
|---|---|
| 論文名稱: |
MARC應用於翼片鍛造之模具最佳化設計 Mold shape optimization design for forging of aerofoil sections using FE simulation software MARC |
| 指導教授: |
葉維磬
WEI-CHING YEH |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 金屬成形 、鍛造 、有限元素分析 、最佳化 |
| 外文關鍵詞: | forging, optimization, aerofoil, FEM, MARC |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文目的在利用MARC有限元素軟體,分析NACA0022葉片冷鍛(Cold Forging)加工之最佳化問題,建立最佳模具曲線。
首先利用魏[23] 所得之軸對稱閉模冷間鍛造成形實驗值及上界限解,與成形負荷與速度場比對之結果,驗證MARC分析冷鍛加工問題的可靠性與妥適性。
再應用MARC有限元素分析軟體,結合最佳化軟體IMSL,建立MARC之最佳化系統,分析葉片鍛造加工問題。以不同摩擦條件,探討材料受力情形、建立最佳模具曲線,使得鍛件最後尺寸與目標葉片曲線誤差量最小。最後,針對誤差趨勢,發展出加權目標函數,改善材料因回彈所造成之局部誤差。
The purpose in this paper is that use the finite element software MARC to analyze the optimization of NACA0022 blade by cold forging processing and establish the best mold shape.
First, to confirm the reliability of the finite element software MARC, we use the experiment and upper-bound method solutions of load and velocity field by Wei’s [ 23 ] cold forging in axial-symmetry close-die, to compare with those solutions of MARC.
Also we union he finite element software MARC and optimal software IMSL to establish a optimal system of MARC which analyze the problem of blade in forging processing. By setting different factor of friction, we can discuss the stress of material and establish best curve of mold to get the minimum error between the final curve by forging and the goal curve of blade . Finally, in view of the erroneous tendency, we develops the cost function which has weight factor to improve the local error because of the spring back of material.
[ 1] L. B. Aksenov, N. R. Chitkara, W. Johnson, “Pressure and deformation in the plane strain pressing of circular section bar to form turbine blades,” Int. J. Mech. Sci. 17 (1975) 681-688.
[ 2] R. Hill, Mathematical Theory of Plasticity. Oxford University Press, London, 1950.
[ 3] W. Johnson, Proc. Third U.S. Natn. Cong. Appl. Mech., Brown University, Providence, p.571, 1958.
[ 4] B.S. Kang, N. Kim, S. Kobayashi, “Computer-aided perform design in forging of an airfoil section blade,” Int. J. Mach. Tools Manuf. 30 (1990) 43-52.
[ 5] G. Maccarini, C. Giardini, G. Pellegrini, and A. Bugini, “The influence of die geometry on cold extrusion forging operations: FEM and experimental results,” J. Mater. Process. Technol. 27 (1991) 227-238.
[ 6] Z. Wang, K. Xue, Y. Liu, “Backward UBET simulation of a blade,” J. Mater. Process. Technol. 65 (1997) 18-21.
[ 7] H. Ou, R. Balendra, “Preform design for forging of aerofoil sections using FE simulation,” J. Mater. Process. Technol. 80-81 (1998) 144-148.
[ 8] M. Zhan, L. Yuli, Y. He, “Research on a new remeshing method for the 3D FEM simulation of blade forging,” J. Mater. Process. Technol. 94 (1999) 231-234.
[ 9] Z. M. Hu, T. A. Dean, “Aspect of forging of titanium alloys and the production of blade forms,” J. Mater. Process. Technol. 111 (2001) 10-19.
[10] X. Lu, R. Balendra, “Temperature-related errors on aerofoil section of turbine blade,” J. Mater. Process. Technol. 115 (2001) 240-244.
[11] X. Duan, T. Sheppard, “Shape optimization using FEA software: a V-shaped anvil as an example,” J. Mater. Process. Technol. 120 (2002) 426-431.
[12] X. Zhao, G. Zhao, G. Wang, and T. Wang, “Preform die shape design for uniformity of deformation in forging based on preform sensitivity analysis,” J. Mater. Process. Technol. 128 (2002) 25-32.
[13] M. Zhan, Y. Liu, H. Yang, “Influence of the shape and position of the perform in the precision forging of a compressor blade,” J. Mater.
Process. Technol. 120 (2002) 80-83.
[14] H. Ou, C. G. Armstrong, “Die shape compensation in hot forging of titanium aerofoil sections,” J. Mater. Process. Technol. 125-126 (2002) 347-352.
[15] L. Yuli, Y. He, Z. Mei, and F. Zengxiang, “A study of the influence of the friction conditions on the forging process of a blade with a tenon,” J. Mater. Process. Technol. 123 (2002) 42-46.
[16] H. Ou, C. G. Armstrong, M. A. Price, “Die shape optimization in forging of aerofoil sections,” J. Mater. Process. Technol. 132 (2003) 21-27.
[17] “IMSL MATH/LIBRARY, User’s Manual, Fortran Subroutines for Mathematical Applications,” IMSL, Inc., Ver2.0, April, 1992, pp. 1030-1035.
[18] H. D. Hibbitt, P. V. Marcal, and J. R. Rice, “A Finite Element Formulation for Problems of Large Strain and Large Displacement,” Int. J. Solids Struct., Vol.6, pp.1069~1086,1970.
[19] R. M. McMeeking, and J. R. Rice, “Finite Element Formulations for Problems of Large Elastic-plastic Deformation,” Int. J. Solids Struct., Vol.11, pp.601~616,1975.
[20] “Theory and user information,” MARC Analysis Research Corporation. Volume A. Version 7.
[21] “Mentat Command Reference,” MARC Analysis Research Corporation. Version 3.1.
[22] “User Subroutines and special Routines,” MARC Analysis Research
Corporation. Volume D. Version 3.1.
[23] 魏有能,“軸對稱閉模鍛造之上界限單元分析” , 碩士論文,國立成功大學機械工程研究所, 1987
[24] 廖鴻賓, “MARC應用於冷鍛加工分析及其驗證分析” , 碩士論文, 國立中央大學機械工程研究所, 2003
[25] 楊文豹, “MARC應用於冷渦輪葉片鍛造之分析” , 碩士論文, 國立中央大學機械工程研究所, 2004
[26] http://www.aerospaceweb.org/question/airfoils/q0100.shtml