跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林萬迪
Wan-Ti Lin
論文名稱: 超音波振動輔助電泳沉積於石英微孔加工特性研究
Ultrasonic Vibration Assisted Electrophoretic Deposition for Machining Microholes in Quartz
指導教授: 顏炳華
Biing-Hwa Yan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 83
中文關鍵詞: 石英超音波振動加工電泳沉積精微拋光
外文關鍵詞: quartz, micro ultrasonic vibration machining, electrophoretic deposition, polishing
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於微機電系統(Micro-Electro Mechanical System, MEMS)之蓬勃發展,MEMS之相關製程、應用逐漸受到矚目。其中超音波振動加工常被用於硬脆材料的加工,如玻璃、石英等。其加工原理是在刀具及材料間的磨粒受到超音波高頻率的振動驅使而撞擊材料,使材料產生微破裂進而去除材料的加工方式,由於製程簡單因此廣泛的應用於工業界。
    本篇研究以超音波振動加工對石英微孔進行加工特性探討,並以結合電泳沈積法及超音波振動之複合拋光製程對加工後的微孔孔壁進行精微拋光的研究。由實驗結果得知,以磨料濃度30%、步進精度0.1µm、進給速度25µm/min、振幅5.4µm、轉速1000rpm之加工參數下,可成功的得到形狀完整之石英微孔。再以電壓5V、磨料濃度10%、電泳液pH 9,經1分鐘的電泳沉積後,可將SiC磨粒有效的沉積於碳化鎢刀具表面,並由超音波振幅6.3µm、刀具轉速2500rpm、研磨時間30min、磨料粒徑0.25µm的拋光下,可將超音波振動加工後之微孔表面粗糙度由Rmax0.48µm改善為Rmax0.08µm,其表面粗糙度改善率為83.3%。


    The micro ultrasonic vibration machining(MUSM)is a non-traditional method that able to machining the hardness and brittleness material like quartz. The basic structure of micro-fabrication is the micro-holes which can use to various applications. However, the vibration of high frequency during MUSM process causes the abrasive particles impact the workpiece by micro-chipping and filled with micro-craters in micro-holes. Hence, this study attempts to improve the quality of MUSMed micro-holes by a polishing method that combines electrophoretic deposition(EDP)and ultrasonic machining(USM).
    According to the result, the micro ultrasonic vibration machining can be fabricate with suitable parameters in MUSM, such as slurry concentration of 30 Wt%, step accuracy of 0.1µm, federate of 25µm/min, amplitude of 5.4µm and rotational speed of 1000rpm which can obtain accuracy micro-holes. After fabricate of micro-holes has done by MUSM process, the polishing parameters such as amplitude of 6.3µm, polishing time of 30min, rotation speed of 2500rpm and SiC particle size of 0.25µm can successfully finish the micro-holes which reduced the surface roughness from Rmax0.48µm to Rmax0.08µm.

    摘 要 i 誌 謝 iii 目 錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 3 1-2-1 超音波振動加工相關文獻 3 1-2-2 電泳沉積相關文獻 4 1-3 研究目的與方法 5 第二章 實驗原理 6 2-1 超音波振動加工基本原理 6 2-1-1 超音波振動加工的材料去除機制 6 2-1-2 超音波振動加工的優缺點 6 2-1-3 超音波錐體及喇叭的種類 7 2-1-4 超音波振動子 7 2-2 電泳沉積基本原理 9 2-2-1 電泳沉積簡介 9 2-2-2 電雙層 11 2-2-3 粉體粒子表面電荷來源 13 2-2-4 電泳沉積磨料之拋光機制 15 2-3 放電加工原理 16 2-3-1 放電加工去除機制 19 2-3-2 放電加工的優缺點 22 2-3-3 放電加工參數與影響 23 第三章 實驗設備、材料與流程 26 3-1 實驗設備 26 3-1-1 放電加工機 27 3-1-2 線放電研削機構 29 3-1-3 X-Y Table電極旋轉夾持機構 30 3-1-4 超音波振動機構 31 3-1-5 精密移動平台 33 3-1-6 CCD(Charge Coupled Device)量測系統 33 3-1-7 電子天平 34 3-1-8 超音波洗淨機 34 3-1-9 去離子純水系統 35 3-1-10 電磁加熱攪拌器 35 3-1-11 低真空掃描式電子顯微鏡 36 3-1-12 原子力顯微鏡 36 3-1-13 pH測量計 37 3-1-14 直流電源供應器 37 3-1-15 蠕動泵浦 38 3-2 實驗材料 39 3-2-1 工件材料 39 3-2-2 工具電極材料 39 3-2-3 線電極材料 40 3-2-4 磨粒材料 40 3-3 實驗參數設定 41 3-3-1 刀具電極放電加工參數 41 3-3-2 超音波振動加工參數 41 3-3-3 電泳沉積參數 42 3-3-4 微孔精微拋光參數 42 3-4 實驗流程 43 第四章 結果與討論 44 4-1 超音波振動於石英微孔加工特性研究 44 4-1-1 磨料濃度對微孔加工的影響 45 4-1-2 進給速度對微孔加工的影響 48 4-1-3 步進精度對微孔加工的影響 50 4-1-4 刀具轉速對微孔加工的影響 52 4-1-5 振幅對微孔加工的影響 55 4-2 超音波振動輔助電泳沉積於石英微孔拋光特性研究 57 4-2-1 電泳沉積參數探討 57 4-2-1-1 電極轉速及沉積時間對電泳沉積厚度之影響 58 4-2-1-2 磨料粒徑對電泳沉積厚度之影響 59 4-2-2 石英微孔之精微拋光參數探討 60 4-2-2-1 拋光時間對孔壁粗糙度的影響 61 4-2-2-2 刀具轉速對孔壁粗糙度的影響 62 4-2-2-3 磨料粒徑對孔壁粗糙度的影響 63 4-2-2-4 添加超音波振動對於孔壁粗糙度的影響 64 4-2-2-5 拋光後孔壁表面形貌 65 第五章 結論 66 參考文獻 67

    1.R.W. Wood, “The physical and biological effects of high frequency sound-waves of great intensity”, Philosophical Magazine Ser, Vol. 7, pp.417-436, 1927.
    2.X.Q. Sun, T. Masuzawa and M. Fjino, “Micro ultrasonic machining and its applications in MEMS”, Sensors and actuators A 57, pp.159-164, 1996.
    3.X.Q. Sun, T. Masuzawa and M. Fjino, “Micro ultrasonic machining and self-aligned multilayer machining/assembly technologies for 3D micromachines”, IEEE Workshop on Micro Electro Mechanical Systems, pp.21-26, 1996.
    4.K. Egashira, T. Masuzawa, “Microultrasonic machining by the application of workpiece vibration”, Annals of the CIRP, Vol. 48 , pp.131-134, 1999.
    5.K. Egashira, T. Masuzawa, M. Fujino, “Micro ultrasonic machining method by precise tool rotation and workpiece vibration", International Conference on Precision Engineering ICPE’97, pp.543-546, 1997.
    6.T.B. Thoe, D.K. Aspinwall, N. Killey, “Combined ultrasonic and electrical discharge machining of ceramic coated nickel alloy”, Journal of Materials Processing Technology, Vol. 92-93, pp.323-328, 1999.
    7.J.S. Lee, D.W. Lee, Y.H. Jung, W.S. Chung, “A study on micro-grooving characteristics of planar light wave circuit and glass using ultrasonic vibration cutting” , Journal of Materials Processing Technology, Vol. 130-131, pp.396-400, 2002.
    8.B.H. Yan, A.C. Wang, C.Y. Huang, F.Y. Huang, “Study of precision micro-holes in borosilicate glass using micro EDM combined with micro ultrasonic vibration machining”, International Journal of Machine Tools & Manufacture, Vol. 42, pp.1105-1112, 2002.
    9.L. Besra, M. Liu, “A review on fundamentals and applications of electrophoretic deposition (EPD)”,Progress in Materials Science ,Vol. 52, pp.1-61, 2007.
    10.S. Put, J. Vleugels, G. Anne, O. Van der Biest, “Functionally graded ceramic and ceramic-metal composites shaped by electrophoretic deposition”,Colloids Surf A: Physicochem Eng Aspects , Vol. 222, pp.223-232, 2003
    11.A. Pfrengle, H. von Both, R. Knitter, J. Haußelt, “Electrophoretic deposition and sintering of zirconia layers on microstructured steel substrates”, Journal of the European Ceramic Society, Vol. 26, pp.2633-2638, 2006.
    12.B. Ferrari, A.J. Sanchez-Herencia, R. Moreno, “Electrophoretic forming of Al2O3/Y-TZP layered ceramics form aqueous suspension”, Materials Research Bulletin , Vol. 33, pp.487-499, 1998.
    13.C. Kaya, F. Kaya, B. Su, B. Thomas, A.R. Boccaccini, “Structural and functional thick ceramic coatings by electrophoretic deposition”, Surface & Coatings Technology, Vol. 191, pp.303-310, 2005.
    14.S. Partho, S. Datta, Nicholson P.S. Nicholson, “Functionally graded ceramic/ceramic and metal/ceramic composites by electrophoretic deposition”, Composites Part B, Vol. 28B, pp.49-56, 1997.
    15.W.M. Choi1 and O.O. Park, “The fabrication of micropatterns of a 2D colloidal assembly by electrophoretic deposition”, Nanotechnology, Vol. 17, pp.325-329, 2006.
    16.K. Takahata, S. Aoki, T. Sato, “Fine surface finishing method for 3-dimensional micro structure”, Proceeding IEEE MEMS, pp.73-78, 1996.
    17.Y. Tani, T. Saeki, Y. Samitsu, K. Kobayashi, Y. Sato, “Infeed grinding of silicon wafers applying electrophoretic deposition of ultrafine abrasives”, Annals of the CIRP, Vol. 47, pp.245-248, 1998.
    18.Z. Haga, T. Semba, “Electrophoretic polishing of zirconia ceramics using a porous anodic film as a binder of ultrafine silica abrasives”, JSME International Journal Series C, Vol. 41, pp.922-928, 1998.
    19.Y. Yamamoto, H. Maeda, H. Shibutani, H. Suzuki and O. Horiuchi, “A study on constant-pressure grinding with EPD pellets”, Key Engineering Materials, Vol. 257-258, pp.135-140, 2004.
    20.T. Oshita, Y. Sawaki, M. Kishimoto, “Grinding performance of pellet prepared using nanosize ceria particles”, Journal of Alloys and Compounds, Vol. 408-412, pp.1118-1122, 2006.
    21.T.B. Thoe, D.K. Aspinwall, M.L.H. Wise, “Review on ultrasonic machining”, International Journal of Machine Tools & Manufacture, Vol. 38, pp.239-255, 1998.
    22.K. Kagaya, Y. Oishi, K. Yada, “Micro-electrodischarge machining using water as a working Fluid-I: Micro-hole Drilling”, Precision Engineering, Vol. 8, pp.156-162, 1986.
    23.T. Masaki, K. Kawata and T. Masuzawa, “Micro electo-discharge machining and its application”, Proc. of MEMS ‘90 IEEE, pp.21-26, 1990.
    24.羅亦琥,「應用放電複合製程之微凹型球面的拋光研究」,國立中央大學碩士論文,民國九十七年。

    QR CODE
    :::