跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳韻安
Yun-An Chen
論文名稱: 開發網印塗佈高分子漿料並應用於結晶矽太陽能電池
A Development of screen-printable polymer pastes for crystalline silicon solar cells
指導教授: 陳一塵
I-Chen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 76
中文關鍵詞: 矽晶太陽能電池高分子漿料網印塗佈背表面鈍化選擇性射極
外文關鍵詞: Crystalline silicon solar cells, Polymer pastes, Screen printing, Passivated emitter and rear cell, Selective emitters
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本項研究目標為開發網印塗佈高分子漿料,並應用於背表面鈍化(passivated emitter and rear cell, PERC)與選擇性射極(selective emitter, SE)矽晶太陽能電池之local contacts與selective emitter圖案製作。以塗佈高分子漿料搭配化學蝕刻之圖案製程技術,無需使用昂貴機台,可降低電池製作成本,且相較於雷射製程,可避免製作過程中的基板表面損傷。此外,我們以此製程為基礎,開發兼具PERC與SE結構太陽能電池,此概念可望有效地降低少數載子復合速率,以提升電池的光電轉換效率。
    實驗初期開發高分子漿料,對溶質、溶劑種類選擇及比例、添加劑等調整,配置出其可適用於網印塗佈製程之高分子漿料;並具有良好抗蝕刻性及基板附著性,最後調整網版印刷參數以獲得均勻的高分子層於矽基板上。在化學蝕刻製程方面,本研究開發出PERC、SE結構共蝕刻技術,能良好調控蝕刻深度,並且不破壞矽基板表面織構化*結構,可有效簡化電池製作程序。
    在太陽能電池實作成果方面,相較於一般全鋁背表面電場(full Al-BSF)電池,PERC結構可提升1.0%以上的光電轉換效率,SE結構可提升0.3%以上;而兼具PERC與SE結構太陽能電池之效率則能提升1.3%以上。


    In this work, we have developed a simple pattering technique by using screen-printable polymer pastes as wet chemical etch masks for fabrication of passivated emitter and rear cell (PERC) and selective emitter (SE) solar cells. In addition, we also fabricated PERC+SE solar cells based on this patterning technique. Compared with conventional laser ablation methods, this patterning technique could potentially cost the manufacturing lower and avoid surface damage during the process. Thus, it can improve the conversion efficiency.
    In order to obtain well etch resistance and adhesion properties, we adjusted the compositions of polymer pastes and made them suitable for screen printing process. During the chemical etching process, we developed a co-etch process which can fabricate PERC and SE patterns simultaneously in one single etch process step. The etch rate can be adjusted and well-controlled, and the integrity of the initial pyramidal surface texture is also well maintained. As for the cell performance, PERC and SE cells promoted at least 1.0% and 0.3% efficiency, respectively, than conventional full Al-BSF cells. An efficiency of 1.3% could be improved for PERC+SE cells fabricated by using the co-etch process.

    摘要.……………………………………………………………………………………. i Abstract…… ii 致謝………………………………………………………………………………….… iii 目錄…………………………………………………………………………………… iv 表目錄………………………………………………………………………………….vi 圖目錄…………………………………………………………………………………vii 第一章 緒論 1 1-1 前言 1 1-2 研究背景與動機 2 第二章 基礎理論及文獻回顧 3 2-1 矽晶太陽電池概論 3 2-1-1 太陽能光譜 5 2-1-2 太陽能電池重要參數 6 2-2不同類型的矽基太陽能電池 13 2-2-1 背表面鈍化射極太陽能電池 (Passivated Emitter and Rear Cell, PERC) 13 2-2-2 選擇性射極太陽能電池 (Selective emitter, SE) 15 2-2-3 異質接面太陽能電池 (Heterojunction with Intrinsic Thin-layer, HIT) 16 2-2-4 指叉狀背接觸太陽能電池(Interdigitated Back Contact , IBC) 18 2-3 太陽能電池之表面複合效應 19 2-4 鋁背表面電場效應 21 2-5 表面鈍化效應 23 2-6 背表面鈍化射極結構之製程技術 24 2-6-1 光學微影法應用於 PERC 結構製程 24 2-6-2 雷射剝除法應用於 PERC 結構製程 24 2-7 選擇性射極結構之製程技術 27 2-7-1 雷射摻雜法應用於SE 結構製程 27 2-7-2 回蝕式之 SE 結構製程技術 28 2-7-3 網印/噴墨磷膠之 SE 結構製程 29 2-8 研究特點與目標 30 第三章 實驗設備與步驟 31 3-1 實驗流程 31 3-2 高分子漿料的配置與網印形貌觀察 32 3-2-1 高分子漿料的配置 32 3-2-2 高分子漿料的網印形貌觀察 34 3-3 背面局部鈍化射極結構太陽能電池製作流程 34 3-4 正面選擇性射極太陽能電池製作流程 36 3-5結合PERC 及SE 結構之太陽能電池製作流程 39 第四章 結果與討論 40 4-1 高分子漿料分析 40 4-1-1 不同成分比例之高分子漿料之網印圖形與性質分析 40 4-1-2 最佳成分比例之高分子漿料網印圖形分析 42 4-2 背面局部鈍化射極太陽能電池之製造 44 4-2-1 以高分子漿料為蝕刻遮罩之鈍化層形貌 44 4-2-2 不同PERC結構之少數載子生命週期量測 44 4-2-3 不同開孔率之PERC太陽能電池性能比較 47 4-3 選擇性射極太陽能電池之製造 50 4-3-1 選擇性射極層之參數 50 4-3-1 不同蝕刻液對表面形貌之影響 51 4-3-2 選擇性射極結構太陽能電池之性能比較 53 4-4 結合PERC 及SE 結構應用於太陽能電池製造 55 4-4-1 鈍化層與射極層之共蝕刻參數 55 4-4-2結合PERC 及SE 結構太陽能電池之性能比較 56 第五章 結論 58 第六章 參考文獻 59

    1. Research Cell Efficiency Records. Available at: https://www.nrel.gov/pv/.
    2. Ohshita, Y. Appl. Phys. Lett. 57, 605 (1990).
    3. P. A. Sheppard. Handbook of Geophysics. (Journal of the royal astronomical society, 1960).
    4. S. O. Kasap. Optoelectronics and Photonics:Principles and Practices. (Prentice Hall, 2001).
    5. D. A. Neamen. Semiconductor Physics and Devices. (McGraw-Hill, 2003).
    6. Wolf, M. &Rauschenbach, Adv. Energy Convers. 3, 455 (1963).
    7. Lindholm, F. A., Fossum, J. G. &Burgess, E. L. IEEE Trans. Electron Devices 26, 165 (1979).
    8. Schimpe, R. Theory of Reflection at the Facet of A Semiconductor-Laser. (Aeu-Archiv Fur elektronik und ubertragungstechnik- International journal of electronics and communications, 1992).
    9. Photovoltaic Education Network. Available at: http://www.pveducation.org/.
    10. Brendel, R., Hirsch, M., Stemmer, M., Rau, U. &Werner, J. H. Appl. Phys. Lett. 66, 1261 (1995).
    11. Y. Gassenbauer, K. Ramspeck, B. Bethmann, K. Dressler, J.D. Moschner, M. Fiedler, E. Brouwer, R. Drssler, N. Lenck, F. Heyer, M. Feldhaus, A. Seidl, M. Muller, A. M. in IEEE Journal of Photovoltaics 125 (2013).
    12. Zhao, S. et al. Appl. Surf. Sci. 290, 66 (2014).
    13. Taguchi, M., Yano, A., Tohoda, S., Matsuyama, K., Nakamura, Y., Nishiwaki, T. et al. IEEE Journal of Photovoltaics, 4(1), 96 (2014).
    14. HIT Photovoltaic Module. 3 (2007).
    15. Tanaka, M. et al. Jpn. J. Appl. Phys. 31, 3518 (1992).
    16. Garner, C. M. & Nasby, R. D. IEEE Electron Device Letters 256 (1980).
    17. Bateman, N., Sullivan, P., Reichel, C. & Benick, J. Energy Procedia 8, 509 (2011).
    18. Heinrich, G. et al. Energy Procedia 8, 592 (2011).
    19. Sze, Simon M.& K. K. N. Physics of semiconductor devices. (John wiley & sons, 2006).
    20. Rauschenbach, M. W. and H. Advanced Energy Conversion. in Advanced Energy Conversion 455 (1963).
    21. Wolf, M. Drift Fields in Photovoltaic Solar Energy Converter Cells. in Proc. IEEE 51, 674 (1963).
    22. J. Mandelkorn, J. H. Lamneck, J. Simplified fabrication of back surface electric field silicon cells and novel characteristics of such cells. in 9th IEEE Photovoltaic Spec. Conf. 66 (1972).
    23. S. M. Sze and K. K. Ng. Physics of semiconductor devices. (John Wiley & Sons, Inc., 2006).
    24. Lölgen, P. L. Surface and volume recombination in silicon solar cells. (Universiteit Utrecht, 1995).
    25. Del Alamo, J., Eguren, J., & Luque, A. Solid-State Electronics 24(5), 415 (1981).
    26. Mandelkorn, J. &Lamneck, J. H. J. Appl. Phys. 44, 4785 (1973).
    27. J. Mandelkorn, J. H. Lamneck, J. Advances in the theory and application of BSF cells. in 11th Photovoltaic Specialists Conference (1975).
    28. Passivation. Available at: https://read01.com/0d008D.htm.
    29. Glunz, S. W., Grohe, A., Hermle, M., Hofmann, M., Janz, S., Roth, T. et al. Comparison of different dielectric passivation layers for application in industrially feasible high-efficiency cristalline silicon solar cells in 20th European Photovoltaic Solar Energy Conference. in Presented at the 20th European Photovoltaic Solar Energy Conference and Exhibition 6, 10 (2005, June).
    30. Balaji, N., Park, C., Lee, Y., Jung, S. &Yi, J. Vacuum 96, 69 (2013).
    31. Singh, A. P., Kapoor, A., Tripathi, K. N. &Kumar, G. R. Opt. Laser Technol. 34, 37 (2002).
    32. Results, E. &Models, P. Phys. Rev. B 26, 5366 (1982).
    33. Du, Z., Palina, N., Chen, J., Hong, M. &Hoex, B. Energy Procedia 25, 19–27 (2012).
    34. Abbott, M., Cousins, P., Chen, F. &Cotter, J. Conf. Rec. IEEE Photovolt. Spec. Conf. 61, 1241 (2005).
    35. Röder, T. C., Eisele, S. J., Grabitz, P., Wagner, C., Kulushich, G., Köhler, J. R., & Werner, J. H. Add‐on laser tailored selective emitter solar cells. in Photovoltaics: Research and Applications 18(7), 505 (2010).
    36. Sipe, J. E., Young, J. F., Preston, J. S. &VanDriel, H. M. Phys. Rev. B 27, 1141 (1983).
    37. Brand, A. A., Knorz, A., Zeidler, R., Nekarda, J.-F. & Preu, R. SPIE. 8473, 84730D (2012).
    38. Kim, M., Kim, D., Kim, D. &Kang, Y. Sol. Energy 109, 105 (2014).
    39. Basu, P. K., Cunnusamy, J., Sarangi, D. &Boreland, M. B. Renew. Energy 66, 69 (2014).
    40. D. Rudolph, K. Peter, A. Meijer, O. Doll, I. K. in the 26th European Photovoltaic Solar Energy Conference and Exhibition 1349 (2011).
    41. H. Haverkamp, A. Dastgheib-Shirazi, B. Raabe, F. Book, G. H. in Photovoltaic Specialists Conference (2008).
    42. F. Book, S. Braun, A. Herguth, A. Dastgheib-Shirazi, B. Raabe, G. H. in Photovoltaic Specialists Conference 1309 (2010).
    43. H. Antoniadis , F. Jiang, W. Shan, Y. L. in Proceedings of the 35th IEEE Photovoltaic Specialists Conference 1193 (2010).
    44. M. Bähr1, G. Heinrich, O. Doll, I. Köhler, C. Maier, A. L. in the 26th European Photovoltaic Solar Energy Conference and Exhibition 1203 (2011).
    45. Gatz, S., Dullweber, T., & Brendel, R. IEEE Journal of Photovoltaics, 1(1), 37 (2011).
    46. Yang, W. J. et al. Sol. Energy 82, 106(2008).
    47. Renshaw, J. S., Cooper, I. B., & Rohatgi, A. Applied Physics Letters, 102(1), 013502 (2013).

    QR CODE
    :::