| 研究生: |
黃政中 Cheng-Chung Huang |
|---|---|
| 論文名稱: |
表面電荷密度對氮化銦鎵表面增強拉曼散射的影響 The effects of surface charge density on InGaN-based surface-enhanced Raman scattering |
| 指導教授: |
賴昆佑
簡汎清 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 表面增強拉曼效應 、表面電荷密度 、表面型態 |
| 外文關鍵詞: | surface-enhanced Raman scattering, surface charge density, surface morphology |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在我們生活中,生醫與我們的生活越來越相關,為了保持優良的生活品質,生醫方面知識成為最炙手可熱的研究議題。表面增強拉曼散射(surface-enhanced Raman scattering, SERS)具備高速、高靈敏度、多工的特性,是極具潛力的生醫感測工具。在此論文中,為了增強待測分子的SERS訊號,我們利用有機金屬化學氣相沉積法,在藍寶石基板上成長微米級氮化鎵粗糙表面,再成長氮化銦鎵量子井,以提升磊晶層表面的載子濃度。我們透過磊晶溫度改變磊晶層的表面粗糙度、並利用量子井的數量調整表面電荷密度。我們發現以850 ℃成長磊晶緩衝層,能得到較高的拉曼強度。此外,增加量子井的層數也能有效增加表面電荷密度、及拉曼訊號強度。未來,我們將持續優化磊晶結構、繼續增強拉曼效應。
Surface-enhanced Raman scattering (SERS) is a promising biosensing tool because of many merits, including high speed, high sensitivity and multiplexing. In this study, in order to enhance the SERS intensity of analytes, we used metal organic chemical vapor deposition (MOCVD) to grow micro-roughened InGaN quantum wells (QWs) on sapphire substrates.In the MOCVD growth, substrate temperature was used to adjust the surface morphology, while quantum well number was employed to control the density of surface charge.We found that the buffer layer grown at the substrate temperature of 850℃ can produce the surface roughness leading to the highest SERS intensity of single-stranded DNA. It is also found that increasing the number of QWs can effectively enhance surface charge density on the SERS substrate. These results demonstrate that the optimized surface roughness and surface charge density can facilitate the SERS process.
1.林鼎晸,表面增強拉曼散射光譜的發展與應用,工業材料雜誌261, 150-155(2008).
2.Campion, A.P. Surface-enhanced Raman scattering. Chem. Soc. Rev.27, 241–250 (1998).
3.Dick, L.A. et al.Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS): Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss.J. Phys. Chem.B106, 853-860(2002).
4.Bankowska, M. et al. Au–Cu Alloyed Plasmonic Layer on Nanostructured GaN for SERS Application. J. Phys. Chem.C 120, 1841-1846(2016).
5.Traci, R.J.et al.Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles. J. Phys. Chem. B 104, 10549(2004).
6.Wang,S.Y.Study of surface-enhanced Raman scattering on nano-structured InGaN quantum wells. MS Thesis, National Central University(2018).
7.Lombardi, J. R. The theory of surface-enhanced Raman scattering on semiconductor nanoparticles; toward the optimization of SERS sensors. Faraday Discuss.205, 105-120 (2017).
8.Dieringer,J. A. et al. Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule. J. Am. Chem. Soc.131, 849-854 (2009).
9.Seshan,K. Handbook of thin film deposition processes and techniques.William Andrew Inc.(2001).
10.Zhu, F.Y. et al. 3D nanostructure reconstruction based on the SEM imaging principle, and applications. Nanotech. 25, 8(2014).
11.Kravets V. G.et al.Cascaded Optical Field Enhancement in Composite Plasmonic Nanostructures.Nano Lett.10, 874(2008).
12.Pendry, J.B. Collective Theory for Surface Enhanced Raman Scattering.Phys.Rev.Lett.77,1163-1166(1993).
13.Kelly, K.L. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 107, 668(2003).
14.Jiang, J.D., Burstein, E. & Kobayashi, H. Resonant raman-scattering by crystal-violet molecules adsorbed on a smooth gold surface-Evidence for a charge-transfer excitation. Phys. Rev. Lett.57, 1793–1796 (1986).
15.Juan, F.W. et al.The role of charge-transfer states of the metal-adsorbatecomplex in surface-enhanced Raman scattering. J.Chem.Phys.112,7669(2000).
16.Campion, A. &Kambhampati, P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 27, 241–250 (1998).
17.Catarina, M. Raman spectroscopy and coherent antiStokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration. J. R. Soc. Interface13(2016).
18.Kelly, K.L.,Coronado,E., Zhao, L.L.,Schatz, G.C.The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment.J. Phys. Chem.107, 668(2003).
19.Wenzhe, L. Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination.J. Mater. Chem. A2,13587-13592
(2014).
20.引用來源:維基百科。
21.Weyhera, J.L., et al.Relationship between the nano-structure of GaN surfaces and SERS efficiency: Chasing hot-spots. Appl.Surf.Sci.466, 554-561(2019).
22.何靖堯,「表面處理對N 型氮化鎵蕭特基二極體特性影響之研究」,逢甲大學碩士論文(民國94年)。
23.引用來源:維基百科。