| 研究生: |
曾遠涵 Yuan-Han Tseng |
|---|---|
| 論文名稱: | Asymptotics of the Bergman Kernel for Positive Line Bundles |
| 指導教授: |
黃榮宗
Rung-Tzung Hung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | Bergman kernel |
| 外文關鍵詞: | Bergman kernel |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於 Charles 以及 Berman, Berndtsson 和 Sj\"{o}strand 的論文,我們展示了一個在$L^k$上 Bergman kernel 漸近展開式的證明,其中$L$是緊緻的凱勒流形上的正線叢。最後我們給出了在複射影空間上的 Bergman kernel 漸進展開式的詳細計算。
We present a proof of an asymptotic expansion in power of $k$ on the Bergman kernel to $L^k$, where $L$ is a positive line bundle over a compact K\"{a}hler manifold, based on the papers of Charles and Berman, Berndtsson and Sj\"{o}strand. We give an explicit computation of the Bergman kernel on complex projective spaces.
[1] Banyaga, A., and Houenou, D. F., A Brief Introduction to Symplectic and Contact Manifolds, Singapore:
World Scientific, (2017).
[2] Berman, R., Berndtsson, B., Sjöstrand, J., A direct approach to Bergman kernel asymptotics for positive
line bundles, Ark. Mat., 46 (2008), 197-217.
[3] Catlin, D, The Bergman Kernel and a Theorem of Tian. In: Komatsu, G., Kuranishi, M. (eds) Analysis
and Geometry in Several Complex Variables, (1999). Trends in Mathematics, pp.1-23, Birkhäuser Boston.
[4] Charles, L., Berezin-Toeplitz Operators, a Semi-Classical Approach, Comm. Math. Phys., 239 (2003),
1-28.
[5] Fefferman, C., The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent Math
26, 1–65 (1974).
[6] Friedlander, F. G. (Friedrich Gerard), and Joshi, M. S., Introduction to the Theory of Distributions. 2nd
ed., F.G. Friedlander, with additional material by M.S. Joshi, Cambridge, UK ;: Cambridge University
Press, (1999).
[7] Krantz, S. G., Geometric Analysis of the Bergman Kernel and Metric, New York: Springer-Verlag, (2013).
[8] Le Floch, Y., A Brief Introduction to Berezin-Toeplitz Operators on Compact Kahler Manifolds, Cham:
Springer International Publishing, (2018).
[9] Ma, X. and Marinescu, G., Holomorphic Morse Inequalities and Bergman Kernels Basel: Birkhäuser,
(2007).
[10] Boutet de Monvel, L., Sjöstrand, J., Johannes, Sur la singularité des noyaux de Bergman et de Szegö,
Journées équations aux dérivées partielles (1975), Astérisque 34-35 pp. 123-164.
[11] Cannas da Silva, A.,Lectures on Symplectic Geometry. 1st ed. 2008, Berlin, Heidelberg: Springer Berlin
Heidelberg, (2008).
[12] Tian, G., On a set of polarized Kähler metrics on algebraic manifolds, Journal of Differential Geometry
32.1, 99-130 (1990).
[13] Tu, W. L., An Introduction to Manifolds. 2nd ed. 2011, New York, NY: Springer New York, (2011).
[14] Zelditch, S., Szegö kernels and a theorem of Tian, International Mathematics Research Notices, Issue 6,
1998, pp. 317–331, (1998).