| 研究生: |
黃嘉毅 Chia-Yi Huang |
|---|---|
| 論文名稱: |
中文郵政地址與鄰近相關資訊擷取之研究 Extraction of Chinese postal addresses and associated information from general Web pages |
| 指導教授: |
張嘉惠
Chia-Hui Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 相關資訊擷取 、條件隨機域 、地址擷取 |
| 外文關鍵詞: | associated information extraction, conditional random fields, address extraction |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
地址在人們的生活中是經常被使用的資訊,人們常需要透過網路查詢相關實體商店、學校或組織的地址,再經由地圖標示服務確定其實際方位。然而並不是每一個網站同時提供地址與地圖標示的功能,因此本研究目的是希望設計一個能從網頁中自動擷取中文地址的服務,並結合地圖標示功能,將擷取到的地址以及其相關資訊,一併標示在地圖上,提供使用者簡單方便的地圖標記資訊服務。
我們的系統分為兩個部分,第一部分,將網頁先經過單獨中文字元切字與Yahoo中文字斷詞兩種斷詞方法處理後,透過條件式隨機域的方式搭配BIEO與IO兩種標記法訓練出地址擷取的模型,輸入的網頁經過此模型的測試過程後並擷取地址;第二部份,則以擷取到的地址為基礎,在網頁中擷取與地址相關的資訊,找出包含地址和相關資訊的地址區塊邊界。實驗結果得知,我們的地址擷取中以所有網頁的總地址為單位的效能可以提升F-measure至九成九,而以個別網頁中的地址為單位的平均效能提升平均F-measure至九成七,同時對於九成二的資料可以正確的擷取到相關資訊。
Address Information is closely linked to people''s daily life. People often need to query addresses of shopping malls、schools and organization, and using the service of map marking to locate the direction. However, not all web pages providing addresses and the facility of map marking at the same time. Therefore, designing a mechanism to extract Chinese addresses automatically from web pages to combines the facility of map marking and marks the extracted addresses and the related information on the map. The service provides users in a convenient and easy way to using the information service of map marking.
Our system is divided into two steps: the first step is using Conditional Random fields to train the model of address extraction. The pages we input enter the testing process of model of address extraction and output the segment of address. The second step is using extracted addresses as landmarks to extract related information and finding out the correct boundary of address blocks. In terms of the result of experiment, the F-measure of extraction by Conditional Random field is up to 0.9914. The accuracy of the incorrect boundary is 0.9212.
1. Saeid Asadi, Guowei Yang, Xiaofang Zhou, Yuan Shi, Boxuan Zhai, Wendy Wen-Rong Jiang: Pattern-Based Extraction of Addresses from Web Page Content. APWeb 2008: 407-418.
2. Karla A. V. Borges, Alberto H. F. Laender, Claudia Bauzer Medeiros, Clodoveu A. Davis: Discovering geographic locations in web pages using urban addresses. GIR 2007: 31-36.
3. Karla A. V. Borges. Use of an Ontology of Urban Places for Recognition and Extraction of Geospatial Evidences on the Web ( in Portuguese ). PhD Thesis, Federal University of Minas Gerais : Belo Horizonte ( MG ), Brazil, 2006.
4. Lin Can, Zhang Qian, Xiaofeng Meng, Wenyin Lin: Postal Address Detection from Web Documents. WIRI 2005: 40-45.
5. P. Nagabhushan, S. A. Angadi, Basavaraj S. Anami: A Fuzzy Symbolic Inference System for Postal Address Component Extraction and Labelling. FSKD 2006: 937-946.
6. Wentao Cai, Shengrui Wang, Qingshan Jiang: Address Extraction: Extraction of Location-Based Information from the Web. APWeb 2005: 925-937.
7. Dayne Freitag: Information Extraction from HTML: Application of a General Machine Learning Approach. AAAI/IAAI 1998: 517-523.
8. Thomas G. Dietterich: Machine Learning for Sequential Data: A Review. SSPR/SPR 2002: 15-30.
9. Olga Ourioupina. 2002. Extracting geographical knowledge from the internet. In Proceedings of the ICDMAM International Workshop on Active Mining.
10. W. Daelemans, J. Zavrel, K. van der Sloot, and A. van den Bosch. TiMBL: Tilburg Memory-Based Learner. ILK Technical Report ─ ILK 02-01, Tilburg, 2002.
11. J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc, San Francisco, 1993.
12. Uryupina, O. (2003) Semi-supervised learning of geographical gazetteers from the internet. In: Kornai, A. and Sundheim, B. (eds.) Proceedings of the HLT-NAACL 2003 Workshop on Analysis of Geographic References, Alberta,Canada: ACL, 18-25.
13. Zheyuan Yu. High Accuracy Postal Address Extraction From Web Pages. Master Thesis, Dalhousie University . 2007.
14. A. Alberto H. F. Laender, Berthier Ribeiro-Neto, and Altigran S. da Silva. DEByE - Data Extraction by Example. Data and Knowledge Engineering, 2002.
15. Wei Liu, Xiaofeng Meng, Weiyi Meng. ViDE: A Vision-based Approach for Deep Web Data Extraction. Transactions on Knowledge and Data Engineering, IEEE, 2007
16. J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. Proc. 18th International Conf.on Machine Learning, 2001.
17. Roman Klinger and Katrin Tomanek. Classical Probabilistic Models and Conditional Random Fields. Algorithm Engineering Report TR07-2-013, Department of Computer Science, Dortmund University of Technology, December 2007. ISSN 1864-4503.
18. Charles Sutton and Andrew McCallum. An Introduction to Conditional Random Fields for Relational Learning.In " Introduction to Statistical Relational Learning ." Edited by Lise Getoor and Ben Taskar. MIT Press, 2006.
19. Y. Liu, E. Shriberg, A. Stolcke, and M. Harper. Comparing HMM, Maximum Entropy and Conditional Random Fields for Disfluency Detection. Proceeding of Eurospeech, 2005.
20. CRF++: Yet Another CRFtoolkit:http://crfpp.sourceforge.net/
21. Google MAP API:http://code.google.com/apis/maps/
22. Hanna M. Wallach. Conditiondal Randiom Fields: An Introduction. Technical Report MS-CIS-04-21. Department of Computer and Information Science, University of Pennsylvania, 2004.
23. Alberto H. F. Laender, Berthier A. Ribeiro-Neto. A Brief Survey of Web Data Extraction Tools. SIGMOD Record, Vol. 31, No. 2, June 2002.
24. B. E. Boser, I. M. Guyon, and V. N. Vapnik. “A training algorithm for optimal margin classifier,” In Proc. 5th ACM Workshop on Computational Learning Theory, pp. 144-152, Pittsburgh, PA, July 1992.