| 研究生: |
鄭紹章 Shao-Chang Cheng |
|---|---|
| 論文名稱: |
氮化鋁鎵/氮化鎵高電子移導率電晶體製作於矽基板與藍寶石基板之特性比較與應用電路 Characteristics of AlGaN/GaN HEMT on silicon and sapphire substrates and its circuit applications |
| 指導教授: |
詹益仁
Yi-Jen Chan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 功率放大器 、直流升壓轉換器 、氮化鎵 |
| 外文關鍵詞: | Power Amplifier, DC-to-DC converter, GaN |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
節省能源的議題在近年來越趨重要,一些日常電子產品,例如3G產品以及車用電子就必須降低能量散失,自80年代以來其皆為使用矽基板材料製作,但由於材料的限制,會有大量的熱消耗以及高頻損失。新興三五族材料如氮化鎵(GaN),在高頻的功率元件上發展迅速因為其具有高功率輸出、高電壓操作以及低切換損失之優點,此論文利用氮化鋁鎵/氮化鎵高電子移導率電晶體製作於矽基板以及藍寶石基板,應用於高轉換效率、高功率應用電路。氮化鎵電晶體由於壓電效應產生二維電子氣(2DEG),電子速度以及密度非常高,且導通電阻低並增加其切換速度。
但當此元件應用在高功率高電流情況會在通道產生熱效應,所以近幾年紛紛發展了氮化鎵成長在矽基板之技術,矽材料具有低成本以及高散熱係數之優點,熱效應使電流散失將會改善。本論文第三章使用了藍寶石以及矽基板製作閘極長度1.5 μm以及寬度1 mm功率電晶體,第四章與第五章分別將此元件應用在直流對直流升壓轉換器以及2.4 GHz功率放大器,直流升壓轉換器在車用方面將可提升效率以及高輸出功率轉換;而高效率之功率放大器將會減少能量的需求以及冷卻系統的成本,皆對節省能源有極大助益。
Saving energy is getting important in recent years because of the huge dissipation causing from the regular electric equipments. Reducing the power from the 3G and the vehicle products is the first step. Silicon is the popular material to fabricate semiconductor elements since 1980’s, but it causes much power loss in heat effect and high frequency loss. The rapid development of the RF power electronics requires a wide bandgap material as GaN device due to its high output power density, high operation voltage and low switching loss. The AlGaN/GaN HEMT devices have a lower on-resistance and a higher switching speed due to the high electron mobility and the high electron density of the 2DEG caused by polarization effect. But when the devices are used for high power and high current applications, the heating effect would be produced in the device channel. Recently, the GaN HEMT devices have been grown on Si substrates because it has some advantages about low cost, large area availability, and the acceptable thermal conductivity, the current dispersion effect in this epitaxy structure is therefore not obviously.
This thesis focuses on the high voltage characteristics of AlGaN/GaN HEMT based on silicon and sapphire substrates, and using the devices to design the high efficiency and high power performance circuits. The characteristics of the AlGaN/GaN power devices (Lg=1.5 μm,Wg=1 mm) which were fabricated on the silicon and sapphire substrates are discussed in Chapter 3. Chapter 4 and Chapter 5 present the circuit applications of the DC-DC converters and the 2.4 GHz power amplifiers using these power devices. The DC-DC converters demonstrate a performance of 10 V-to-20 V voltage conversion which can achieve the high efficiency and high output power for supplying the vehicle electronics applications. The GaN power amplifiers designed for 2.4 GHz wireless transmissions are also presented with high efficiency performance to reduce power requirements and simplifies cooling system.
[1] B.J. Baliga, "Trends in power semiconductor devices," IEEE Transactions on Electron Devices, vol. 43, pp. 1717-1731,(1996).
[2] J.J. Wierer, D.A. Steigerwald, M.R. Krames, J.J. O''Shea,” High-power AlGaInN flip-chip light-emitting diodes”, Appl. Phys. Lett, vol. 78, pp. 3379 ,(2001).
[3] S.H. Baek, J.O. Kim, M.K. Kwon, I.K. Park, S.I. Na, J.Y. Kim,” Enhanced Carrier Confinement in AlInGaN–InGaN Quantum Wells in Near Ultraviolet Light-Emitting Diodes”,IEEE Photonics Technology Letters, vol.18, pp.11 (2006).
[4] T. Nishida,H. Saito,N Kobayashi,” Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN”, Appl. Phys. Lett, vol. 79,pp.711 ,(2001).
[5] N. Zhang,” High voltage GaN HEMTs with low on-resistance for switching applications”, Doctor of Philosophy in Electrical and Computer Engineering ,(2002).
[6] U.K. Mishra, L.S. Thomas, E. Kazior, and Y.F. Wu,” GaN-Based RF Power Devices and Amplifiers”, IEEE vol.96, pp. 2 ,(2008).
[7] O. Ambacher,” Growth and applications of group Ⅲ-nitrides”, Journal of Physics Vol.31, pp.2653-710 ,(1998).
[8] R.J. Campbell, K. Rajashekara,”Evaluation of Power Devices for Automotive Hybrid and 42V Based Systems”, 2004 SAE World Congress Detroit,Michigan March 8-11 ,(2004).
[9] M. Ishico,”Recent R&D Activities of Power Devices for Hybrid Electric Vehicles”,R&D Review of Toyota CRDL vol.39 pp.4 ,(2004).
[10]王雅萱,”異質接面雙極性電晶體VBIC模型建立及其在射頻電路之應用,”碩士論文,國立中央大學 ,(2003).
[11] H. Sano, N. Ui , S.S. Eudyna, K.Cho, S.Ku, Yokohama, Kanagawa,” A 40W GaN HEMT Doherty Power Amplifier with 48% Efficiency for WiMAX Applications”, pp.244-0845 ,(2007).
[12] T.Yamamoto, “High-Linearity 60W Doherty Amplifier for 1.8GHz W-CDMA”, IEEE MTT Microwave Symposium Digest, pp.1352-1355 ,(2006).
[13] I. Takenaka, K. Ishikura, H Takahashi, KHasegawa, "A
330WDistortion-Cancelled Doherty 28V GaAs HJFET Amplifier with 42% Efficiency for W-CDMA Base Stations", 2006 IEEE MTT-S Microwave Symposium Digest, pp.1344-1347 ,(2006).
[14] U.K. Mishra , P. Parikh, Y.F. Wu,” AlGaN/GaN HEMTs: An overview of device operation and applications” Electrical & Computer Engineering Department,
Engineering I, University of California, Santa Barbara .
[15] R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur,” Self-Heating in High-Power AlGaN-GaN HFET’s”, IEEE Electron Device Letters, vol.19, pp. 3, (1998).
[16] J.W. Johnson, J. Gao, K. Lucht, J. Williamson, “Material, Process, and Device Development of GaN-based HFETs on Silicon Substrates”, Nitronex Corporation, NC 27606.
[17] R. Behtash, H. Tobler, M. Neuburger, A. Schurr, H. Leier,Y. Cordier, E Semond,F. Natali and J. Massies,” AIGaN/GaN HEMTs on Si(ll1) with6.6 W/mm output power density”, Electronics Letters, (2003)
[18] J.W. Johnson, E.L. Piner, A.Vescan, R. Therrien, P. Rajagopal,” 12 W/mm AlGaN/GaN HFETs on Silicon Substrates,”IEEE Electronics Letters, vol.25, pp. 7 ,(2004).
[19] L. Liu, J.H. Edgar,” Substrates for gallium nitride epitaxy”, Materials Science and Engineering, pp.61–127,(2002).
[20] M. Sakai, T. Egawa1, H. Ishikawa, and T. Jimbo,” Reduction of the bowing in MOVPE AlGaN/GaN HEMT structures by using an interlayer insertion method”,Physica Status Solid, vol.7, pp.2412–2415 (2003) .
[21] E.T.Yu and M.O.Manasreh,”Ⅲ-Ⅴ Nitride Semiconductors: Applications & Devices”, Taylor & Fransic,(2002)
[22] J. Bernat, P. Javorka, A. Fox, M. Marso, ”Influence of Layer Structure on Performance of AlGaN/GaN High Electron Mobility Transistors before and after Passivation”, Journal of Electronic Materials, vol. 33, pp. 5, (2004).
[23] 王文凱,”深次微米氮化鎵高電子移率電晶體之製作與應用”,中央大學電機所博士班論文,(2006).
[24] O. Ambacher,B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu,” Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures”, Journal of Applied Physics,vol.85, pp. 3222 (2000).
[25] F. Sacconi, A.D. Carlo, P. Lugli, and Hadis Morkoç,” Spontaneous and Piezoelectric Polarization Effects on the Output Characteristics of AlGaN/GaN Heterojunction Modulation Doped FETs,” IEEE Transactions on Electron Devices, vol. 48, pp. 3, (2001).
[26] Y. Han, S. Xue,T. Wu, Z.Wu, W. Guo, Y. Luo,”Nonselective and smooth etching of GaN/AlGaN heterostructures by Cl2/Ar/BCl3 inductively coupled plasmas”,Journal of Vacuum Science & Technology ,vol. 22, pp. 407-412,(2004).
[27] N Chaturvedi, U Zeimer, J Würfl and G Tränkle,” Mechanism of ohmic contact formation in AlGaN/GaN high electron mobility transistors”, Semicond. Science
Technology, vol.21, pp. 175-179, (2006).
[28] M.E. Lin, Z.Ma, F.Y. Huang, Z. F. Fan, L. H. Allen,” Low resistance ohmic contacts on wide band-gap GaN”, Appl. Phys. Lett, vol.64, pp.21,(1994)
[29] N. Miura, T. Nanjo , M. Suita , T. Oishi , Y. Abe , T. Ozeki , H. Ishikawa, T. Jimbo,” Thermal annealing effects on Ni/Au based Schottky contacts on n-GaN and AlGaN/GaN with insertion of high work function metal”,Solid-State Electronics, vol.48, pp.689–695,(2004).
[30] L. S. Yu, D. J. Qiao, Q. J. Xing, and S. S. Lau,” Ni and Ti Schottky barriers on n-AlGaN grown on SiC substrates”, Applied Physics Letters, vol 73, (1998).
[31] L. Yang ,”New method to measure source and drain resistance of the GaAs MESFET Model”,IEEE Electron Device Lett, vol .7, pp 75-77,(1986).
[32] G. Dambrine, A. Cappy, F. Heliodore, E. Playez,”A New Method for Determining the FET Small-Signal Equivalent Circuit,” IEEE Transactions on Microwave Theory and Techniques, vol.36, pp. 7, (1988).
[33]宋自恆, 林慶仁,”剖析切換式電源供應器的原理及常用元件規格”, 新電子科技雜誌第196 期, (2002).
[34]S. Ajram, R. Kozlowski, H. Fawaz, D.Vandermoere and G, Salmer,”A fully GaAs-based 100MHz, 2W DC-to-DC Power Converter.”Solid-State Device Research Conference, pp. 284-287,(1997).
[35] Y.Chung, S.Cai, W.Lee, Y.Lin, “High power AlGaN/GaN HEMT feedback amplifier module with drain and feedback loop inductances,” Electronic Letters, vol. 37, no. 19,(2001).
[36] K. Krishnamurthy,R.Vetury, S.Keller, U. Mishra, “Broadband GaAs MESFET and GaN HEMT Resistive Feedback Power Amplifiers,” IEEE Journal of Solid-state Circuits, vol.35, no.9, (2000).
[37] J. Flucke, C. Meliani, F. Schnieder and W.Heinrich,” Improved Design Methodology for a 2 GHz Class-E Hybrid Power Amplifier Using Packaged GaN-HEMTs”, Proceedings of the 37th European Microwave Conference.
[38] Y. Lee and Y. Jeong,” A High-Efficiency Class-E GaN HEMT Power Amplifier for WCDMA Applications”, IEEE Microwave and Wireless Components Letters, vol. 17, no. 8, (2007).