| 研究生: |
張哲瀚 Che-han Chang |
|---|---|
| 論文名稱: |
雙足機器人之強健穩定控制 The robust and stability control of a bipled robot |
| 指導教授: |
王文俊
Wen-June Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 控制系統 、雙足機器人 、外力抵抗 、感測模組 、平衡控制 |
| 外文關鍵詞: | sensor modules, balance Control, control system, biped robots |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要在分析與研究如何賦予雙足機器人自主性的姿態強健穩定能力。其中包含了即時外力抵抗、斜坡平衡以及斜坡行走之強健穩定能力。而本研究中使用的機器人具有22個自由度,其中每個腳踝擁有2個自由度,再加上3個獨特的自由度在機器人的腰部關節,使其能夠有更多的自由度來獨立調整姿態,進而適應各種不同的環境與干擾。接著分析與模仿人類抵抗外力的方法,利用壓力感測器與慣性量測模組所測得之訊號作為輸入以建立機器人的模糊控制器,而控制器之輸出即為腳踝及腰部之角度,進而達到機器人在三種不同干擾的環境中自主平衡。最後再以實驗數據分析與比較控制器給機器人帶來的平衡貢獻,而結果証明所提出的控制器確實能有效的即時修正機器人姿態並提高其強健穩定度。
This study proposes a real-time balance control for a humanoid robot to resist external forces or to adapt the poor environment such as resisting the forces from the hammer, standing on a moving platform and walking on a slope platform. We study the robustness of the humanoid robot with fuzzy controllers in the above three conditions. The adopted humanoid robot is constructed by 22 motors and it has three degrees of freedom (DoF) in the waist especially. To maintain the standing balance of the humanoid robot, the force sensor module and inertial measurement unit (IMU) are the input of the fuzzy controllers. Then the fuzzy controller is applied to adjust the waist and ankle angles of the robot to resist the external force and conquer the poor environment. The experiment results demonstrate that the waist-ankle fuzzy controller is efficient for the humanoid robot to resist unknown external forces and slope platform, respectively.
[1] X. H. Li, S. L. Tan and W. X. Huang, “A household service robot with two arms and multi-sensor in unstructured environments,” in Proceedings of IEEE International Congress on Image and Signal Processing, 2009, pp.1-5.
[2] HONDA ASIMO首頁。2010年07月30號,
http://asimo.honda.com/
[3] Sony AIBO Europe首頁。2010年06月15號,
http://support.sony-europe.com/aibo/
[4] ALDEBARAN首頁。2010年07月30號,
http://www.aldebaran-robotics.com/en/Nao.php
[5] Sony Global首頁。2010年07月30號,
http://www.sony.net/SonyInfo/News/Press_Archive/200312/03-060E
[6] 廖本煇 (張江南教授指導),“二足機器人之動態步行軌跡分析”,國立中央大學機械工程研究所碩士論文,2005年。
[7] S. Feng and Z. Sun, “A simple trajectory generation method for biped walking,” in Proceedings of 10th International Conference on Control, Automation, Robotics and Vision, 2008, pp. 2078–2082.
[8] J. L. Yan and H. P. Huang, “A fast and smooth walking pattern generator of biped robot using Jacobian inverse kinematics,” in Proceedings of 2007 Advanced Robotics and its Social Impacts, 2007, pp. 1–6.
[9] J. H. Park, “Fuzzy-logic zero-moment-point trajectory generation for reduced trunk motions of biped robots,” Fuzzy Sets and Systems, vol. 134, issue 1, pp.189–203, 2003.
[10] J. S. Kong, E. H. Lee, B. H. Lee and J. G. Kim, “Study on the real-time walking control of a humanoid robot using fuzzy algorithm,” International Journal of Control, Automation, and Systems, vol. 6, issue 4, pp. 551–558, 2008.
[11] K. Loffler, M. Gienger, F. Pfeiffer and H. Ulbrich, “Sensors and control concept of a biped robot,” IEEE Transactions on Industrial Electronics, vol. 51, issue 5, pp. 972–980, 2004.
[12] K. Erbatur, A. Okazaki, K. Obiya, T. Takahashi and A. Kawamura, “A study on the zero moment point measurement for biped walking robots,” in Proceedings of International Workshop on Advanced Motion Control, 2002, pp. 431–436.
[13] Q. Huang, and Y. Nakamura, “Sensory reflex control for humanoid walking,” IEEE Transactions on Robotic and Automation, vol. 21, issue 5, pp. 977–984, 2005.
[14] H. Y. Liu, W. J. Wang and R. J. Wang, “A course in simulation and demonstration of humanoid robot motion,” IEEE Transactions on Education, vol. 54, issue 2, pp. 255-262, 2011.
[15] K. Suwanratchatamanee, M. Matsumoto and S. Hashimoto, “Balance control of robot and human-robot interaction with haptic sensing foots,” in Proceedings of 2009 IEEE International Conference on Human System Interactions, 2009, pp. 68-74.
[16] K. Suwanratchatamanee, M. Matsumoto and S. Hashimoto, “Robotic tactile sensor system and application,” IEEE Transactions on Industrial Electronics, vol. 57, issue 3, pp.1074-1087, 2010.
[17] J. P. Ferreira, M. M. Crisostomo and A. P. Coimbra, “SVR versus neural-Fuzzy network controllers for the sagittal balance of a biped robot,” IEEE Transactions on Neural Networks, vol. 20, pp. 1885-1897, 2009.
[18] J. P. Ferreira, M. M. Crisostomo and A. P. Coimbra, “Control of a biped robot with support vector regression in sagittal plane,” IEEE Transactions on Instrumentation and Measurement, vol. 58, pp. 3167-3176, 2009.
[19] TP-LINK 首頁。2010年7月15號,
http://www.tplink.com.tw/tw/product_1_3.php?id=34&menu=1
[20] RoBoard首頁。2010年7月5號,
http://www.roboard.com/
[21] BUFFALO TECHNOLOGY 首頁。2010年7月15號,
http://www.buffalo-tech.com.tw/product.php?T_Id=2&P_Id=167
[22] ROBOTIS首頁。2009年5月20號,
http://www.robotis.com/xe/
[23] SparkFun Electronics首頁。2010年 3月4號,
http://www.sparkfun.com/
[24] 淺草機研首頁。2010年9月05號,
http://www.robotsfx.com/
[25] 藝科資訊電子感測模組商城。2010年 10月6號,
http://www.aroboto.com/shop/
[26] Arduino.TW首頁。2011年2月20號,
http://arduino.tw/introprograming.html
[27] ROBOTIS技術支援與軟體下載首頁。2011年2月15號,
http://support.robotis.com/en/
[28] Mealy狀態機介紹。2011年3月29號,
http://zh.wikipedia.org/wiki/%E7%B1%B3%E5%88%A9%E5%9E%8B%E6%9C%89%E9%99%90%E7%8A%B6%E6%80%81%E6%9C%BA
[29] YouTube影音搜尋網站。2011年2月15號,
http://www.youtube.com/watch?v=KSPb8iNuhyA