| 研究生: |
黎魁原 Le Tan Duc |
|---|---|
| 論文名稱: | Numerical Study on the Influence of Heat and Mass Transfer inside the Source Rod on the PVT SiC Crystal Growth |
| 指導教授: |
陳 志臣
Jyh-Chen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 物理氣相傳輸 、8英吋碳化矽單晶 、多孔粉擴散 、耦合數值模擬 、熱應力緩解 |
| 外文關鍵詞: | Physical Vapor Transport, 8-Inch Silicon Carbide Single Crystal, Diffusion in Porous Source Powder, Coupled Numerical Simulation, Thermal Stress Mitigation |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討以物理氣相傳輸(PVT)方法生長大尺寸且高品質碳化矽(SiC)單晶,尤其8英吋之SiC單晶對於先進電子應用至關重要。研究聚焦於影響晶體生長的關鍵因素,包括生長腔內的熱與物質傳輸,特別著重於多孔 SiC 粉中的耦合擴散機制,以提升模擬準確性。
本研究通過數值模擬分析了絕緣設計、加熱線圈配置以及溫度梯度對熱場分佈、物質傳輸和生長速率的影響。結果顯示,多孔粉末內的擴散對於準確預測物質傳輸和熱梯度相當重要;且表面間輻射模型可以準確預測熱場,故內部輻射對熱傳的影響可忽略不計。此簡化模型降低計算複雜性,卻不影響模擬結果的準確性。
模擬結果表示,多孔粉末內的傳輸擴散過程對於預測材料生長相當重要,且降低孔隙率有助於改善熱傳。調整加熱線圈數量和絕熱設計能穩定熱環境,防止多晶體邊緣產生缺陷及過高的熱應力。
本研究分析多孔粉內部擴散及熱傳的耦合作用,證明內部輻射可忽略而不影響準確性。此改進可促進電子設備製造達到高效能生產無缺陷之8英寸SiC晶體。
This study investigates the physical vapor transport (PVT) method for growing large, high-quality silicon carbide (SiC) single crystals, specifically targeting the 8-inch crystal size that is critical for advanced electronic applications. The research explores key factors influencing crystal growth, including heat and species transport within the growth chamber, with a particular emphasis on coupled diffusion mechanisms within the porous SiC source powder to enhance simulation accuracy and improve process understanding.
Numerical simulations were employed to analyze the effects of insulation designs, heating coil configurations, and temperature gradients on heat distribution, species transport, and growth rates. The findings emphasize that diffusion within porous powder is essential for achieving precise predictions of species transport and thermal gradients. Additionally, internal radiation is shown to have negligible effects on heat transfer, with simulations confirming that surface-to-surface radiation models are sufficient for accurate predictions of the thermal field. This simplification reduces computational complexity without compromising accuracy.
The results demonstrate the importance of diffusion processes in the porous powder source to refine material transport predictions and reducing porosity to improve heat transfer. Adjustments to heating coil numbers and insulation designs are also shown to stabilize thermal environments, preventing defects such as polycrystalline edges and excessive thermal stress.
In conclusion, this study provides a detailed analysis of the coupled effects of diffusion within porous source powder and thermal management strategies, demonstrating that internal radiation can be neglected without sacrificing accuracy. These advancements support the efficient production of defect-free 8-inch SiC crystals, facilitating further progress in high-performance electronic device manufacturing.
1. Shi, Y., P. Dai, J. Yang, Z. Jin, J. Cheng, and H. Liu, Effects of Grain Size of Source Material on Growing 6H-SiC Bulk Crystal by Physical Vapor Transport. Materials and Manufacturing Processes, 2012. 27(1): p. 84-87.
2. Zhang, S., G. Fu, H. Cai, J. Yang, G. Fan, Y. Chen, T. Li, and L. Zhao, Design and optimization of thermal field for PVT method 8-inch SiC crystal growth. Materials, 2023. 16(2): p. 767.
3. Lin, S., Z. Chen, B. Liu, L. Li, and X. Feng, Identification and control of SiC polytypes in PVT method. Journal of Materials Science: Materials in Electronics, 2010. 21: p. 326-330.
4. Ma, R., H. Zhang, V. Prasad, and M. Dudley, Growth kinetics and thermal stress in the sublimation growth of silicon carbide. Crystal growth & design, 2002. 2(3): p. 213-220.
5. Zhang, Z., M. Xu, and L. Wang, Heat Transfer Inside the Physical Vapor Transport Reactor. Journal of Heat Transfer, 2016. 138(10): p. 102002.
6. Yan, J.-Y., Q.-S. Chen, Y.-N. Jiang, and H. Zhang, Improvement of the thermal design in the SiC PVT growth process. Journal of crystal growth, 2014. 385: p. 34-37.
7. Yang, Y., J. Wang, and Y. Wang, Thermal stress simulation of optimized SiC single crystal growth crucible structure. Journal of Crystal Growth, 2018. 504: p. 31-36.
8. Tan, P., W. Kang, J. Yin, and J. Kang, 200 mm silicon carbide bulk growth optimisation: mass transport controlled by a designed gas deflector. Physica Scripta, 2022. 97(10): p. 105708.
9. Lu, J., Z.-B. Zhang, and Q.-S. Chen, Numerical simulation of the flow field and concentration distribution in the bulk growth of silicon carbide crystals. Journal of crystal growth, 2006. 292(2): p. 519-522.
10. Li, Z. and R. Bradt, Thermal expansion of the hexagonal (6H) polytype of silicon carbide. Journal of the American Ceramic Society, 1986. 69(12): p. 863-866.
11. Chen, H., W. Hang, R. Wang, J. Yuan, X. Pi, D. Yang, and X. Han, Numerical analysis of the dislocation density in n-type 4H-SiC. CrystEngComm, 2023. 25(26): p. 3718-3725.
12. Chen, Q.-S., H. Zhang, V. Prasad, C. Balkas, and N. Yushin, Modeling of heat transfer and kinetics of physical vapor transport growth of silicon carbide crystals. J. Heat Transfer, 2001. 123(6): p. 1098-1109.
13. Kaneko, T., Growth kinetics of vapor-grown SiC. Journal of crystal growth, 1993. 128(1-4): p. 354-357.
14. Vueghs, P. and P. Beckers, Presentation of the hemisphere method. WIT Transactions on Engineering Sciences, 2006. 53: p. 121-130.
15. Su, J., X. Chen, and Y. Li, Numerical design of induction heating in the PVT growth of SiC crystal. Journal of crystal growth, 2014. 401: p. 128-132.
16. Klein, O. and P. Philip, Transient numerical investigation of induction heating during sublimation growth of silicon carbide single crystals. Journal of Crystal Growth, 2003. 247(1-2): p. 219-235.
17. Ravindra, N.M., S.R. Marthi, and A. Bañobre, Radiative properties of semiconductors. 2017: Morgan & Claypool Publishers.
18. Wang, Y., M. Sasaki, and T. Hirai, Thermal properties of chemical vapour-deposition SiC-C nanocomposites. Journal of materials science, 1991. 26: p. 5495-5501.
19. Duc, D.H., I. Naoki, and F. Kazuyoshi, A study of near-infrared nanosecond laser ablation of silicon carbide. International Journal of Heat and Mass Transfer, 2013. 65: p. 713-718.
20. Chen, S. and S. Saxena, Thermal conductivity of argon in the temperature range 350 to 2500 K. Molecular Physics, 1975. 29(2): p. 455-466.
21. Incropera, F.P., D.P. DeWitt, T.L. Bergman, and A.S. Lavine, Fundamentals of heat and mass transfer. Vol. 6. 1996: Wiley New York.
22. Howell, J.R., M.P. Mengüç, K. Daun, and R. Siegel, Thermal radiation heat transfer. 2020: CRC press.
23. Groth, R. and E. Kauer, Absorption freier Ladungsträger in α‐SiC‐Kristallen. physica status solidi (b), 1961. 1(5): p. 445-450.
24. Ota, S., T. Furusho, H. Takagi, S. Oshima, and S. Nishino. High quality SiC bulk growth by sublimation method using elemental Silicon and Carbon powder as SiC source materials. in Materials Science Forum. 2004. Trans Tech Publ.
25. Lan, R.-W., Influence of Thermal Field, Flow Field and Concentration Distribution on Crystal Growth During the PVT Growth of Silicon Carbide Single Crystal. 2022, National Central University.
26. Herro, Z., P. Wellmann, R. Püsche, M. Hundhausen, L. Ley, M. Maier, P. Masri, and A. Winnacker, Investigation of mass transport during PVT growth of SiC by 13C labeling of source material. Journal of crystal growth, 2003. 258(3-4): p. 261-267.
27. Wellmann, P.J., Review of SiC crystal growth technology. Semiconductor Science and Technology, 2018. 33(10): p. 103001.
28. Ma, R.-H., H. Zhang, S. Ha, and M. Skowronski, Integrated process modeling and experimental validation of silicon carbide sublimation growth. Journal of crystal growth, 2003. 252(4): p. 523-537.
29. Yang, X.L., Y.N. Pan, C. Gao, Q.R. Liang, L.P. Wang, J.Y. Zhang, Y.H. Gao, X.X. Ning, and H.Y. Zhang, Development of High Quality 8 inch 4H-SiC Substrates. Solid State Phenomena, 2023. 344: p. 41-46.
30. Zhmakin, I., A. Kulik, S.Y. Karpov, S. Demina, M. Ramm, and Y.N. Makarov, Evolution of thermoelastic strain and dislocation density during sublimation growth of silicon carbide. Diamond and related materials, 2000. 9(3-6): p. 446-451.