| 研究生: |
莊瀚伯 Han-Bo Zhuang |
|---|---|
| 論文名稱: |
牙科植體術後骨缺損型態之結構分析 The structure analysis of bony defects on dental implants after surgery |
| 指導教授: |
潘敏俊
Min-Chun Pan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 牙科植體 、骨缺損 、有限元素分析 、模態測試 |
| 外文關鍵詞: | finite element analysis, dental implant, bony defect, modal testing |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對牙科植體術後骨整合程度差異,所造成不同骨缺損型態,發展非侵入式檢測評估技術,探討並定量植體/齒槽骨之骨整合與植牙結構特性之關聯。透過所發展測量技術,期能改善臨床常用X光二維影像判讀之不足與僅以量測結構共振頻率呈現整體現象之限制,協助醫生監測病患植體與齒槽骨之整合情形,以提高植牙的成功率。為建立相關檢測評估技術,研究中設計兩類植牙放大實驗模型,進行實驗模態測試和有限元素模態分析,相互驗證並歸納結構共振頻率和骨整合狀態之關係。從研究中獲知,植體裸露無包覆時,其頻率為最低;隨著模型包覆高度的減少,結構共振頻率出現降低趨勢,此說明骨缺損會影響植體/齒槽骨結構,降低植體穩固度,由於剛性較小,以致結構共振頻率降低。為有助進行後續臨床研究,進行不規則骨缺損實驗及利用等比例條件進行植牙模擬分析,並提出後續研究方法。
This thesis aims at developing a technique to detect the differences of osseointergration on dental implants after surgery. Different osseointegration conditions cause variant bone defects. The developed noninvasive test distinguishes structure variations between implant/alveolus and osseointegration. Then, it makes the fixation quality analysis to create a measurement method, helps doctors monitor the developed implant conditions of patients and increases the success of embedding teeth. Therefore, this study designs two amplified experimental models to proceed the experimental modal testing and the finite element modal analysis. It induces the mutually relation of resonance frequency and mode shape. As a result, implants no coating and have lowest frequency. The decrease of models height and the frequency pattern is lower. These outcomes prove bone defects to affect the structure of implant/alveolus and reduce the stability of implants. This investigate provides simultaneously follow up research methods for the experiment of irregular bony defects and actual size implant/alveolus models.
Adell, R., Lekholm, U., Rockler, B. and Branemark, P. I., “A 15 Years Study of Osseointegrated Implants in the Treatment of the Edentulous Jaw,” International Journal of Oral and Maxillofacial Surgery, Vol. 10, No. 6, pp. 137-416 (1981).
Albrektsson, T., “Tissue-Integrated Prostheses: Osseointegration in Clinical Denisity,” Quintessence Publishing, Chicago (IL), pp. 129-143 (1985).
Albrektsson, T. and Albrektsson, B., “Osseointehration of Bone Implants: a Review of an Alterative Mode of Fixation,” Acta Orthopaedica Scandinavica, Vol. 58, pp. 567-577 (1987).
Albrektsson, T., “Dental Implants: a Review of Clinical Approaches,” Aust Prosthodont Soc Bull, Vol. 15, pp. 7-25 (1985).
Brunski, J. B., The Influence of Force, Motion and Related Quantities on the Response of Bone to Implants, Raven Press Ltd., New York, pp. 7-21 (1998).
Brånemark, R., A Biomechanical Study of Osseointegration, In-vivo Measurements in Rat, Rabbit, Dog and Man, Gothenburg, Sweden (1996).
Carlsson, L., Rostlund, T., Albrektsson, B. Albrektsson, T. and Branemark, P. I., “Osseointegrated of Titanium Implants,” Acta Orthopaedica Scandinavica, Vol. 57, pp. 285-289 (1988).
Chavez, H., Ortman, L. F., DeFranco, R. L. and Medige, J., “Assessment of Oral Implant Mobility,” Journal of Prosthetic Dentistry, Vol. 70, No. 5, pp.421-426 (1993).
Cucchiaro, P. J., DeLuzio, A., Dario, L. J. and Cucchiaro, S. J., “Structural Analyzer in Particular for Medical Implants,” United States Patent, Vol. 5, No.8, pp. 518 (1996).
Çiftçi, Y. and Cancy, Ş., “The Effect of Veeneering Materials on Stress Distribution in Implant-Supported Fixed Prosthetic Restorations,” International Journal of Oral and Maxillofacial Implants, Vol. 15, No.4, pp. 571-582 (2000).
Donath, K., “Die Trenn-d ü Nnschliff-Techink Zur Herstellung Histologischer Präparate Von Nicht Schneidbaren Geweben Und Materialien,” Der Präparator, Vol. 34, pp.197-206 (1988).
Donath, K., Kirsch, A. and Osborn, J. F., “Zellulare Dynamik Um Enossale Titanimplantate,” Fortschr Zamarztal Implantol, Vol. 1, pp. 55-58 (1984).
Elias, J., Brunski, J. B. and Scarton, H. A., “A Dynamic Model Testing Technique for Noninvasive Assessment of Bone-Dental Implant Interface,” International Journal of Oral and Maxillofacial Implants, Vol. 11, No. 6, pp. 728-734 (1996).
Evans, J. A. and Tavakoli, M. B., “Ultrasonic Attenuation and Velocity in Bone,” Physics in Medicine and Biology, Vol. 35, No. 10, pp. 1387-1396 (1990).
Frost, H. M., Mechanical Adaptation. Frost’s Mechanostat Theory, Raven Press Ltd., New York, pp. 179-181 (1989).
Goheen, L. and Vermilyea, G., “Torque Generated by Hand-Held Screwdrivers and Mechanical Torquing Devices for Ossesintegrated Implants,” International Journal of Oral and Maxillofacial Implants, Vol. 9, No. 2, pp. 149-155 (1994).
Gibson, R. F. and Wen, Y. F., “Evaluation of Boundary Conditions for a Composite Plate Vibration Test,” Proceeding of the Spring Conference on Experimental Mechanics Conference, pp. 19-27 (1993).
Heller, J. G., Bradley, T., Estes, M. S. and Diop, A., “Biomechanical Study of Screw in the Lateral Masses: Variables Affecting Pull-out Resistance,” Journal of Bone and Joint Surgery, Vol. 78, No, 9, pp. 1315-1321 (1996).
Huang, H. M., Pan, L. C., Lee, S. Y., Chiu, C. L., Fan, K. H. and Ho, K. N., “Assessing the Implant-Bone Interface by Using Natural Frequency Analysis,” Clinical Oral Implants Research, Vol. 90, No. 3, pp. 285-291 (2000).
Huang, H. M., Yeh, C. Y., Pan, S. Y. and Lee, S. Y., “Factors Influencing the Dynamic Behavior of Human Teeth,” Medical & Biological Engineering & Computing, Vol. 39, No. 2, pp. 176-181 (2001).
Johansson, C. B., Sennerby, L. and Albrktsson, T., “A Removal Torque and Histomorphometric Study of Bone Tissue Reactions to Commercially Pure Titanium and Vitallium Implants,” International Journal of Oral and Maxillofacial Implants, Vol. 6, No. 4, pp. 437-441 (1991).
Johansson, C. B. and Albreksson, T., “Integration of Screw Implants in the Rabbit: a One-Year Follow-up of Removal Torque of Titanium Implants,” International Journal of Oral and Maxillofacial Implants, Vol. 2, No. 2, pp. 69-76 (1987).
Jaceques, S. V. N., Pastrav, C., Zahariuc, A. and Van der Perre, G., “Analysis of the Fixation Quality of Cementless Hip Prostheses Using a Vibration Technique,” Proceedings of 2004 ISMA Conference, Heverlee, Belgium, pp. 443-456 (2004).
Kaneko, T., “Pulsed Oscillation Technique for Assessing the Mechanical State of the Dental Implant-Bone Interface,” Journal of Biomaterials, Vol. 12, No. 6, pp. 555-560 (1991).
Kitamura, E., Stegaroiu, R., Nomura, S. and Miyakawa, O., “Influence of Marginal Bone Resorption on Stress around an Implant – a Three-Dimensional Finite Element Analysis,” Journal of Oral Rehabilitation, Vol. 32, No. 4, pp. 279-286 (2005).
Leholm, U. and Zarb, G. A., “Tissue-Integrated Prostheses: Osseointegration in Clinical Denisity,” Quintessence Publishing, Chicago (IL), pp. 199-209 (1985).
Lee, S. Y., Huang, H. M., Lin, C. Y. and Shih, Y. H., “In vivo and in vitro Natural Frequency Analysis of Periodontal Conditions, an Innovative Method,” Journal of Periodontal Research, Vol. 71, No. 4, pp. 632-640 (1999).
Lowet, G., Van Audekercke, R., Van der Perre, G., Geusens, P., Dequeker, J. and Lammens, J., “The Relation between Resonant Frequencies and Torsional Stiffness of Long Bones in vitro Validation of a sample Beam Model,” Journal of Biomechanics, Vol. 26, No. 6, pp. 689-696 (1993).
Meredith, N. and Sennerby, L., “Resonance Frequency Analysis: Measuring Implant Stability and Osseointegration,” Compendium of Continuing Education Denstitry, Vol. 19, No. 5, pp. 493-502 (1998).
Morgan, M. J. and James D. F., “Force and Moment Distributions among Osseointegrated Dental Implants,” Journal of Biomechanics, Vol. 28, No. 9, pp. 1103-1109 (1995).
Muhlemann, H. R., “Periodontometry, a Method for Measuring Tooth Mobility,” Oral Surgery, Oral Medicine, Oral Pathology, Vol. 4, No. 10, 1220-1233 (1951).
Meredith, N., Alleyne, D. and Cawley, P., “Quantitative Determination of the Stability of the Implant-Tissue Interface Using Resonance Frequency Analysis,” Clinical Oral Implants Research, Vol.7, No. 3, pp. 261-267 (1996).
Meirovitch, L., Fundamentals of Vibrations, McGraw-Hill, New York (2001).
Oka, H., Yamamoto, T., Saratani, K. and Kawazoe, T., “Application of Mechanical Mobility of Periodontal Tissues to Tooth Mobility Examination,” Medical & Biological Engineering & Computing, Vol. 27, No. 1, pp. 75-81 (1989).
Oka, H., Yamamoto, T. and Saratani, K., “Automatic Diagnosis of Tooth Mobility for Clinical Use,” Medical Progress through Technology, Vol. 16, No. 3, pp. 117-124 (1990).
Pattijn, V., Jaecques, S. V. N., De Smet, E., Muraru, L., Van Lierde, C., Van der Perre, G., Naert, I. and Vander Sloten, J., “Resonance Frequency Analysis of Implants in the Guinea Pig Model: Influence of Boundary Conditions and Orientation of the Transducer,” Medical Engineering & Physics, Vol. 28, No. 9, pp. 1119-1127 (2006).
Rangert, B., Jemt, T. and Jorneus, L., “Forces and Moments on Branemark Implants,” International Journal of Oral and Maxillofacial Implants, Vol. 4, No. 3, pp.241-247 (1989).
Sullivan, D. Y., Sherwood, R. L., Collins, T. A. and Krogh, P. H. J., “The Reverse-Torque Test. A Clinical Report,” International Journal of Oral and Maxillofacial Implants, Vol. 11, No. 2, pp. 179-185 (1996).
Salonen, M., Oikarinen, K., Virtanen, K. and Pernu, H., “Failures in the Osseointegration of Endosseous Implants,” International Journal of Oral and Maxillofacial Implants, Vol. 8, No. 1, pp. 92-97 (1993).
Sunden, S., Grondahl, K. and Grondahl, H. G., “Accuracy and Precision in the Radiographic Diagnosis of Clinical Instability in Brånemark Dental Implants,” Clinical Oral Implants Research, Vol. 6, No. 4, pp. 220-226 (1995).
Serpe, L. and Rho, J. Y., “The Nonlinear Transition Period of Broadband Ultrasound Attenuation as Bone Density Varies,” Journal of Biomechanical, Vol. 29, No. 7, pp. 963-966 (1996).
Thomson, W. T., Theory of Vibration with Applications, Prentice-Hall, New York, pp. 221-229 (1995).
Williams, K. R. and Williams, A. D. C., “Impulse Response of a Dental Implant in Bone by Numerical Analysis,” Journal of Biomaterials, Vol. 18, No. 10, pp. 715-719 (1997).
William, D. and Callister, J. R., Materials Science and Engineering an Introduction, 4th ed., Willy, New York, pp. 740-745 (2003).
王大介,「利用共振頻率分析法研究植體在類似不同骨密度環境下之穩固度」,碩士論文,國防醫學院牙醫科學研究所,臺北(2004)。
王栢村,振動學,全華科技圖書股份有限公司,臺北(2002)。
王重杰,王栢村,「懸臂樑之自由振動有限元素分析」,ANSYS應用技術通訊,第一期,第36-43頁(1995)。
王栢村,電腦輔助工程分析之實務與應用,全華科技圖書股份有限公司,臺北(2005)。
余俊杰,「不同模擬形式與程度的齒槽骨缺損對牙齒動搖度之共振響應分析」,碩士論文,臺北醫學大學口腔復健醫學研究所,臺北(2001)。
李友順,「開發臨床骨密度儀之研究」,碩士論文,國立成功大學醫學工程研究所,臺南(2005)。
林世芬,「以激振方式分析人工牙根穩固度之相關性研究」,碩士論文,臺北醫學大學口腔復健醫學研究所,臺北(2002)。
林奕男,「懸臂樑結構尺寸與自然頻率及阻尼比關係之研究」,碩士論文,國立中興大學機械工程研究所,臺中(2004)。
陳璟鋒,「利用共振頻率初始值預測牙科植體之癒合時間及可能穩定值:以動物實驗及離體實驗」,碩士論文,臺北醫學大學口腔復健醫學研究所,臺北(2003)。
陳精一,ANSYS振動學實務分析,高立圖書有限公司,臺北(2005)。
黃恒立,「區域型膺復體人工植牙之生物力學分析」,碩士論文,國立成功大學醫學工程研究所,臺南(2001)。
曹文昌,「基於振動方法之結構非破壞性檢測評估」,碩士論文,國立屏東科技大學機械工程系,屏東(2002)。
黃立鑫,「實驗模態分析研習報告」,國立屏東科技大學機械工程系,屏東(2001)。
鄭光佑,「人工牙根穩固度檢測儀之設計與驗證」,碩士論文,臺北醫學大學口腔復健醫學研究所,臺北(2002)。
楊景義,王信義,試驗模態分析,北京理工大學出版社,北京(1989)。