| 研究生: |
楊正宇 Cheng-Yu Yang |
|---|---|
| 論文名稱: |
氧硒化鋅/砷化鎵太陽能電池 ZnSeO/GaAs Solar Cells |
| 指導教授: |
綦振瀛
Jen-Inn Chyi |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 硒化鋅 、中間能帶 、太陽能電池 、氧硒化鋅 |
| 外文關鍵詞: | ZnSe, ZnSeO, solar cells, intermediate band |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中間能帶材料在太陽能電池的應用中是目前相當具有潛力的概念,主要原因在於中間能隙帶能有效延伸光譜的吸收範圍。在本論文中,我們首次以中間能帶材料,氧硒化鋅 (ZnSeO),應用於太陽能電池的結構中,並以理論及實驗檢視氧硒化鋅太陽能電池的特性。
文中首先探討不同氧含量之氧硒化鋅的結構與光學特性,其中大於10^4 cm-1的吸收係數使得氧硒化鋅在太陽能電池上的應用具有相當程度的潛力。本文中亦引用一中間能帶太陽能電池理論計算,同時將氧硒化鋅材料的各項參數導入,其結果顯示具中間能隙的氧硒化鋅太陽能電池光電轉換效率可達25 % 。
為實現該太陽能電池,文中以p型砷化鎵為基板,於上成長氧硒化鋅和n型氧化鋅以形成一p-n二極體。為減少太陽能電池的串聯電阻及電流傳輸上的功耗,文中提出鈦/鋁/鎳/金 (Ti/Al/Ni/Au)歐姆接觸,且在高摻雜鎵摻雜氧化鋅薄膜上可達到相當低的特徵接觸阻值為2.6×10^-7 Ω-cm2。元件特性顯示,相較於硒化鋅吸收層的太陽能電池,氧硒化鋅太陽能電池增加了16 %的短路電流,且開路電壓維持不變,轉換效率可提高約43 %。但由於材料品質的問題及尚在開發階段的磊晶技術,因此本實驗中未能實際觀察到中間能帶的現象,但也為接續的材料開發與應用踏出重要的一步。
To date, materials with intermediate band become potential applications in solar cells because the spectral response could be extended by the intermediate band in the forbidden gap. In this thesis, we first demonstrated the ZnSeO based intermediate band solar cells and its characteristics were particularly investigated.
The structural and optical properties of ZnSeO with varying oxygen content were studied in this work. The high absorption coefficients (>104 cm-1) of ZnSeO made it a promising candidate in solar cell. Theoretical calculation based on self-consistent drift-diffusion method was referred in this work. The results showed the conversion efficiency of ZnSeO based solar cell could reach 25 %.
To realize the solar cell structure, ZnSeO with n-ZnO window layer were grown on p-GaAs substrate in this study. We also propose Ti/Al/Ni/Au ohmic contact to minimize the series resistance and power consume in solar cells, and low specific contact resistivity of 2.6×10-7 Ω-cm2 could be achieved. The ZnSeO based solar cells exhibit a 16 % increase of the short circuit current and same open circuit voltage in comparison to ZnSe based cells. Thus, a 43 % improvement in conversion efficiency could be obtained. However, existence of intermediate band could not be observed in ZnSeO solar cell because of the quality issues. This work does provide the opportunities for ZnSeO applied in photovoltaic devices.
[1] Available: http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/091207_pv_industry_expected_to_return_to_high_growth_in_2010.asp
[2] J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, "19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells," Applied Physics Letters, vol. 73, p. 1991, 1998.
[3] M. Wolf, "Limitations and Possibilities for Improvement of Photovoltaic Solar Energy Converters: Part I: Considerations for Earth''s Surface Operation," Proceedings of the IRE, vol. 48, pp. 1246-1263, 1960.
[4] W. Shockley and H. J. Queisser, "Detailed Balance Limit of Efficiency of p-n Junction Solar Cells," Journal of Applied Physics, vol. 32, p. 510, 1961.
[5] G. Guttler and H. Queisser, "Impurity photovoltaic effect in silicon," Energy Conversion, vol. 10, pp. 51-55, 1970.
[6] A. Luque and A. Marti, "Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels," Physical Review Letters, vol. 78, pp. 5014-5017, 1997.
[7] A. Luque and A. Marti, "Recent Progress in Intermediate Band Solar Cells," pp. 49-52, 2006.
[8] M. A. Green, "Multiple band and impurity photovoltaic solar cells: General theory and comparison to tandem cells," Progress in Photovoltaics: Research and Applications, vol. 9, pp. 137-144, 2001.
[9] A. Luque, A. Marti, E. Antolin, and C. Tablero, "Intermediate bands versus levels in non-radiative recombination," Physica B: Condensed Matter, vol. 382, pp. 320-327, 2006.
[10] K. W. J. Barnham, B. Braun, J. Nelson, M. Paxman, C. Button, J. S. Roberts, and C. T. Foxon, "Short-circuit current and energy efficiency enhancement in a low-dimensional structure photovoltaic device," Applied Physics Letters, vol. 59, p. 135, 1991.
[11] A. Marti, L. Cuadra, and A. Luque, "Partial filling of a quantum dot intermediate band for solar cells," IEEE Transactions on Electron Devices, vol. 48, pp. 2394-2399, 2001.
[12] R. Oshima, A. Takata, and Y. Okada, "Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells," Applied Physics Letters, vol. 93, p. 083111, 2008.
[13] G. Beaucarne, A. S. Brown, M. J. Keevers, R. Corkish, and M. A. Green, "The impurity photovoltaic (IPV) effect in wide-bandgap semiconductors: an opportunity for very-high-efficiency solar cells," Progress in Photovoltaics: Research and Applications, vol. 10, pp. 345-353, 2002.
[14] K. M. Yu, W. Walukiewicz, J. W. Ager, D. Bour, R. Farshchi, O. D. Dubon, S. X. Li, I. D. Sharp, and E. E. Haller, "Multiband GaNAsP quaternary alloys," Applied Physics Letters, vol. 88, p. 092110, 2006.
[15] E. Canovas, A. Marti, A. Luque, and W. Walukiewicz, "Optimum nitride concentration in multiband III-N–V alloys for high efficiency ideal solar cells," Applied Physics Letters, vol. 93, p. 174109, 2008.
[16] W. Wang, A. S. Lin, and J. D. Phillips, "Intermediate-band photovoltaic solar cell based on ZnTe:O," Applied Physics Letters, vol. 95, p. 011103, 2009.
[17] T. Tanaka, K. M. Yu, A. X. Levander, O. D. Dubon, L. A. Reichertz, N. Lopez, M. Nishio, and W. Walukiewicz, "Demonstration of ZnTe1-xOx Intermediate Band Solar Cell," Japanese Journal of Applied Physics, vol. 50, p. 082304, 2011.
[18] A. Luque, A. Martı́, C. Stanley, N. Lopez, L. Cuadra, D. Zhou, J. L. Pearson, and A. McKee, "General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence," Journal of Applied Physics, vol. 96, p. 903, 2004.
[19] S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, "Effect of strain compensation on quantum dot enhanced GaAs solar cells," Applied Physics Letters, vol. 92, p. 123512, 2008.
[20] S. A. Blokhin, A. V. Sakharov, A. M. Nadtochy, A. S. Pauysov, M. V. Maximov, N. N. Ledentsov, A. R. Kovsh, S. S. Mikhrin, V. M. Lantratov, S. A. Mintairov, N. A. Kaluzhniy, and M. Z. Shvarts, "AlGaAs/GaAs photovoltaic cells with an array of InGaAs QDs," Semiconductors, vol. 43, pp. 514-518, 2009.
[21] C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, "Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells," Applied Physics Letters, vol. 98, p. 163105, 2011.
[22] A. Luque and A. Marti, "The intermediate band solar cell: progress toward the realization of an attractive concept," Adv Mater, vol. 22, pp. 160-74, Jan 12 2010.
[23] J. Li and S.-H. Wei, "Alignment of isovalent impurity levels: Oxygen impurity in II-VI semiconductors," Physical Review B, vol. 73, 2006.
[24] K. Uesugi, N. Morooka, and I. Suemune, "Reexamination of N composition dependence of coherently grown GaNAs band gap energy with high-resolution x-ray diffraction mapping measurements," Applied Physics Letters, vol. 74, p. 1254, 1999.
[25] J. N. Baillargeon, K. Y. Cheng, G. E. Hofler, P. J. Pearah, and K. C. Hsieh, "Luminescence quenching and the formation of the GaP1−xNx alloy in GaP with increasing nitrogen content," Applied Physics Letters, vol. 60, p. 2540, 1992.
[26] W. G. Bi and C. W. Tu, "N incorporation in InP and band gap bowing of InNxP1−x," Journal of Applied Physics, vol. 80, p. 1934, 1996.
[27] J. C. Harmand, G. Ungaro, J. Ramos, E. V. K. Rao, G. Saint-Girons, R. Teissier, G. Le Roux, L. Largeau, and G. Patriarche, "Investigations on GaAsSbN/GaAs quantum wells for 1.3–1.55μm emission," Journal of Crystal Growth, vol. 227-228, pp. 553-557, 2001.
[28] B. N. Murdin, M. Kamal-Saadi, A. Lindsay, E. P. O’Reilly, A. R. Adams, G. J. Nott, J. G. Crowder, C. R. Pidgeon, I. V. Bradley, J. P. R. Wells, T. Burke, A. D. Johnson, and T. Ashley, "Auger recombination in long-wavelength infrared InNxSb1-x alloys," Applied Physics Letters, vol. 78, p. 1568, 2001.
[29] M. Seong, H. Alawadhi, I. Miotkowski, A. Ramdas, and S. Miotkowska, "Role of electronegativity in semiconductors: Isoelectronic S, Se, and O in ZnTe," Physical Review B, vol. 62, pp. 1866-1872, 2000.
[30] W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, J. Wu, E. E. Haller, Y. Nabetani, T. Mukawa, Y. Ito, and T. Matsumoto, "Effect of oxygen on the electronic band structure in ZnOxSe1-x alloys," Applied Physics Letters, vol. 83, p. 299, 2003.
[31] A. Polimeni, M. Capizzi, Y. Nabetani, Y. Ito, T. Okuno, T. Kato, T. Matsumoto, and T. Hirai, "Temperature dependence and bowing of the bandgap in ZnSe1-xOx," Applied Physics Letters, vol. 84, p. 3304, 2004.
[32] W. Shan, W. Walukiewicz, J. Ager, E. Haller, J. Geisz, D. Friedman, J. Olson, and S. Kurtz, "Band Anticrossing in GaInNAs Alloys," Physical Review Letters, vol. 82, pp. 1221-1224, 1999.
[33] N. Lopez, L. Reichertz, K. Yu, K. Campman, and W. Walukiewicz, "Engineering the Electronic Band Structure for Multiband Solar Cells," Physical Review Letters, vol. 106, 2011.
[34] A. Luque, A. Marti, and C. Stanley, "Understanding intermediate-band solar cells," Nature Photonics, vol. 6, pp. 146-152, 2012.
[35] Y. Nabetani, T. Mukawa, Y. Ito, T. Kato, and T. Matsumoto, "Epitaxial growth and large band-gap bowing of ZnSeO alloy," Applied Physics Letters, vol. 83, p. 1148, 2003.
[36] Y. Nabetani, T. Mukawa, T. Okuno, Y. Ito, T. Kato, and T. Matsumoto, "Structure and optical properties of ZnSeO alloys with O composition up to 6.4%," Materials Science in Semiconductor Processing, vol. 6, pp. 343-346, 2003.
[37] K. Iwata, A. Yamada, P. Fons, K. Matsubara, and S. Niki, "Natural ordering of ZnO1−xSex grown by radical source MBE," Journal of Crystal Growth, vol. 251, pp. 633-637, 2003.
[38] A. Belabbes, A. Zaoui, and M. Ferhat, "Lattice mismatch consequences for the intrinsic characteristics in the dilute (Zn, Se)O alloys," Journal of Physics: Condensed Matter, vol. 19, p. 456212, 2007.
[39] Y. K. Kim, J. K. Kim, W. G. Lee, S. Y. Kim, B. I. Kim, J. H. Ha, N. Starzhinskiy, V. Ryzhikov, and B. Grinyov, "Properties of semiconductor scintillator ZnSe:O," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 580, pp. 258-261, 2007.
[40] S. Kurtz, J. F. Geisz, B. M. Keyes, W. K. Metzger, D. J. Friedman, J. M. Olson, A. J. Ptak, R. R. King, and N. H. Karam, "Effect of growth rate and gallium source on GaAsN," Applied Physics Letters, vol. 82, p. 2634, 2003.
[41] M. Smith, G. D. Chen, J. Y. Lin, H. X. Jiang, M. Asif Khan, and Q. Chen, "Time-resolved photoluminescence studies of InGaN epilayers," Applied Physics Letters, vol. 69, p. 2837, 1996.
[42] A. S. Lin, W. Wang, and J. D. Phillips, "Model for intermediate band solar cells incorporating carrier transport and recombination," Journal of Applied Physics, vol. 105, p. 064512, 2009.
[43] R. S. Crandall, "Modeling of thin film solar cells: Uniform field approximation," Journal of Applied Physics, vol. 54, p. 7176, 1983.
[44] S. S. Hegedus, "Current–Voltage Analysis of a-Si and a-SiGe Solar Cells Including Voltage-dependent Photocurrent Collection," Progress in Photovoltaics: Research and Applications, vol. 5, pp. 151-168, 1997.
[45] F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, "Efficiency limits for single-junction and tandem solar cells," Solar Energy Materials and Solar Cells, vol. 90, pp. 2952-2959, 2006.
[46] M. A. Green, Solar Cells: Prentice Hall, 1982.
[47] J. Nelson, The Physics of Solar Cells: Imperial College Press, 2003.
[48] V. Aroutiounian, S. Petrosyan, A. Khachatryan, and K. Touryan, "Quantum dot solar cells," Journal of Applied Physics, vol. 89, p. 2268, 2001.
[49] G. Wei, K.-T. Shiu, N. C. Giebink, and S. R. Forrest, "Thermodynamic limits of quantum photovoltaic cell efficiency," Applied Physics Letters, vol. 91, p. 223507, 2007.
[50] A. Luque and A. Marti, "A metallic intermediate band high efficiency solar cell," Progress in Photovoltaics: Research and Applications, vol. 9, pp. 73-86, 2001.
[51] S. Adachi, Handbook on Physical Properties of Semiconductors vol. 3, 2004.
[52] C. Hu, Z. Ding, Z. Qin, Z. Chen, K. Xu, Y. Wang, Z. Yang, S. Yao, B. Shen, and G. Zhang, "Investigation on the different barrier effect of Ni and Pt in the Ti/Al/Pt/Au and Ti/Al/Ni/Au contacts to n-type GaN," Journal of Crystal Growth, vol. 298, pp. 804-807, 2007.
[53] Y. I. Alivov, J. E. Van Nostrand, D. C. Look, M. V. Chukichev, and B. M. Ataev, "Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes," Applied Physics Letters, vol. 83, p. 2943, 2003.
[54] J. M. Lee, K. K. Kim, S. J. Park, and W. K. Choi, "Low-resistance and nonalloyed ohmic contacts to plasma treated ZnO," Applied Physics Letters, vol. 78, pp. 3842-3844, 2001.
[55] S. Young Kim, H. Won Jang, J. Kyu Kim, C. Min Jeon, W. Il Park, G.-C. Yi, and J.-L. Lee, "Low-resistance Ti/Al ohmic contact on undoped ZnO," Journal of Electronic Materials, vol. 31, pp. 868-871, 2002.
[56] K. Ip, K. H. Baik, Y. W. Heo, D. P. Norton, S. J. Pearton, J. R. LaRoche, B. Luo, F. Ren, and J. M. Zavada, "Annealing temperature dependence of contact resistance and stablity for Ti/Al/Pt/Au ohmic contacts to bulk n-ZnO," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 21, p. 2378, 2003.
[57] K. Ip, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, and F. Ren, "Carrier concentration dependence of Ti/Al/Pt/Au contact resistance on n-type ZnO," Applied Physics Letters, vol. 84, p. 544, 2004.
[58] K. Ip, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, and F. Ren, "Specific contact resistance of Ti/Al/Pt/Au ohmic contacts to phosphorus-doped ZnO thin films," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 22, p. 171, 2004.