跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱信菖
Shin-Chang Chiou
論文名稱: 攪拌系統中膠體顆粒凝絮機制與穩態分析
Aggregation of colloidal aggregation in an agitated system
指導教授: 秦靜如
Ching-Ju Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 83
中文關鍵詞: 軌跡分析凝絮效率擾流狀態之剪力流穩態分析
外文關鍵詞: stability diagram, turbulent shear, Aggregation efficiency, trajectory analysis
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以軌跡分析模擬顆粒在擾流狀態之剪力流場中的運動行為,在忽略布朗運動及重力作用的情形下,探討離子強度、顆粒間凡德瓦爾吸引力、靜電斥力與流場中剪應力,對兩顆粒間碰撞效率的影響,結果發現,在高離子強度(0.01~0.1 M)中,碰撞效率是隨著Hamaker constant的上昇而增加,而不隨界達電位改變,另外在低離子強度(0.0005~0.001 M)、高粒徑比(0.9~1.0)、高轉速(300rpm)且低Hamaker constant (A=8E-20 J)時,此時若界達電位越大,越容易發生碰撞效率越低或等於零的情形。當轉速與粒徑漸增時,碰撞效率都是呈現逐漸下降的趨勢。利用統計分析,建立碰撞效率迴歸式後發現,在I=0.0005~0.1 M,粒徑比0.2~0.8之間,碰撞效率是與Ca0.1呈現正比關係;接著在I=0.0005~0.1 M,粒徑比為0.9 與 I=0.01~0.1 M,粒徑比為1.0中,碰撞效率是與Ca0.2呈現正比關係;最後,在I=0.001 M與0.0005 M,粒徑比為1.0中,碰撞效率與Ca0.3呈現正比關係。最後是繪製NR -NF及κ (ri+rj)-NF穩定機制圖,主要將混凝區域分為三大部分:一級混凝區、二級混凝區與穩態區,穩定機制圖的目的是爲了避免繁雜的計算,來求得顆粒是位於何種混凝區,所以利用假設的參數條件,經過簡易的計算
    κ (ri+rj)、NF與NR,就可判定是何種混凝區。


    Aggregations of colloidal particles in stirred tanks were modeled by trajectory analysis in this study. The influences of Hamaker constant, ionic strength (I), zeta potential, and agitation speed on the collision efficiency between two unequal-sized particles were investigated. The simulation results showed that at high ionic strength, the collision efficiency increased with increasing Hamaker constant and were not affected by zeta potentials. When ionic strength is low and particle size ratio is close to 1, the collision efficiency dropped to zero at high zeta potentials. A semi- empirical collision efficiency equation was formulated using STATISTICA by analyzing trajectory analysis results. It was found that the collision efficiency is a function of Ca to the power of 0.1, 0.2, and 0.3 at I = 0.0005 ~ 0.1 M and ??(particle size ratio) = 0.2 ~ 0.8, I = 0.0005~0.1 M and ? = 0.9, as well as I = 0.01 ~ 0.1 M and ? = 1, respectively. Stability diagram of particle aggregations in stirred tanks was also established. Influences of various parameters on the boundaries in the stability diagram were also discussed.

    第一章 前言 1 1.1研究緣起 1 1.2 研究目的 2 1.3 研究流程 2 第二章 文獻回顧 3 2.1 DLVO理論 3 2.1.1 靜電力(Electrostatic Forces) 4 2.1.2 凡得瓦爾力(Van der Waals Forces) 8 2.2 膠體顆粒在流場中的機制 10 2.2.1流場抗阻函數 11 2.2.2 擾流狀態之剪力流場下的機制 12 2.3 膠體顆粒的軌跡分析 13 2.3.1 軌跡分析的演進 14 2.3.2 影響顆粒運動的作用力 14 2.3.3 顆粒運動的軌跡方程式 15 2.4 膠體顆粒的碰撞效率 17 2.4.1 流場中的凝絮行為 17 2.4.2 流場中的碰撞效率 18 第三章 研究方法 21 3.1 模式架構 21 3.2 參數條件 24 3.3 數據分析 26 3.3.1碰撞效率的計算 26 3.3.2 碰撞效率的迴歸模式 26 3.3.3 混凝的穩定機制圖 29 第四章 結果與討論 35 4.1 影響兩顆粒碰撞效率的主要因素 35 4.1.1 離子強度對碰撞效率的影響 35 4.1.2 界達電位對碰撞效率的影響 37 4.1.3 Hamaker constant對碰撞效率的影響 39 4.1.4 轉速對碰撞效率的影響 42 4.2 碰撞效率迴歸式之建立 43 4.3 混凝機制圖 51 第五章 結論與建議 58 5.1 結論 58 5.2 建議 59 參考文獻 60 附錄一 符號說明 64 附錄二 67 附錄三 69 附錄四 71 附錄五 74

    1. Derjaguin, B. V. and L. D. Landau, “Theory of stability of strongly charged
    lyophobic sols and of the adhesion of strongly charged particles in solutions of
    electrolytes”, Acta Physicochimca URSS, 14, 733-762 (1941).
    2. Verwey, E. J. W. and J. Th. G. Overbeek, “Theory of the stability of lyophobic
    colloids”, Elsevier, Amsterdam (1948).
    3. Fair, G. M., J. C. Geyer, and D. A. Okum, “Water purification and waste water
    treatment and disposal”, John Wiley and Sons:New York (1968).
    4. 石濤,環境化學,鼎茂出版社,第八章,第四頁 (2001)。
    5. Stern, O., “Zur theorie der’elektrolytischem doppelschicht”, Annals
    Electrochemical, 30, 508-526 (1924).
    6. 楊萬發,水及廢水處理化學,茂昌出版社,第六章(2002)。
    7. Tsouris, C. and T. C. Scott, “Flocculation of paramagnetic particles in a magnetic field”, Journal of Colloid and Interface Science, 171,319-330 (1995).
    8. Bell, G. M., S. Levins, and L. N. McCartney, “Approximate methods of determining the double-layer free energy of interaction between two charged colloidal spheres”, Journal of Colloid and Interface Science, 33, 335-359 (1970).
    9. Hogg, R., T. W. Healy, and D. W. Fuerstenau, “Mutual coagulation of colloidal
    dispersions”, Transactions Faraday Society, 18, 1638-1651 (1966).
    10. London, L. D. and E. M. Liftshitz, “Statistical physicals”, Pergamon, Oxford
    (1969).
    11. Hamaker, H. C., “London-van der waals attraction between spherical particles”,
    Physica, 4, 1058-1072 (1937).
    12. Zeichner, G. R. and W. R. Schowalter, “Effects of hydrodynamic and colloid
    forces on the coagulation of dispersions”, Journal of Colloid and Interface
    Science, 71, 237-253 (1979).
    13. Ho, N. F. H. and W. I. Higuchi, “Pregerential aggregation and coalescence in
    heterodispersed systems”, Journal of Pharmaceutical Sciences, 57, 436-442
    (1968).
    14. Haber, S., and G. Hetsroni, “Low Reynolds number motion of two drops submerged in an unbounded arbitrary velocity field”, International Journal of Multiphase Flow, 4, 1-17 (1978).
    15. Zinchenko, A. Z., “The slow asymmetrical motion of two drops in a viscous medium”, Journal of Applicandae Mathematicae, 44, 30-35 (1980).
    16. Zhang, X. and R. H. Davis, “Collision efficiencies of small drops”, Journal of Fluid Mechanics, 230, 479-489 (1991).
    17. Lin, C. J., K. J. Lee, and N. F. Sather, “Slow motion of two spheres in a shear flow”, Journal of Fluid Mechanics, 43, 35-47 (1970).
    18. Adler, P. M., “Interaction of unequal spheres : I. Hydrodynamic interaction:
    colloidal forces ”, Journal of Colloid and Interface Science, 84, 461-474 (1981).
    19. Brenner. H., and M. E. O’Neill, “On the Stokes resistance of multiparticle systems in a shear flow field”, Journal of Chemical Engineering Science, 27, 1421-1439(1972).
    20. Kim, S., and R. T. Mifflin,” The resistance. and mobility functions of two equalspheres in low-Reynolds-number flow”, Journal of Physics of Fluids, 28, 2033-2045 (1985).
    21. Yoon, B. J., and S. Kim,” A boundary collocation method for the motion of two spheroids in stokes flow: hydrodynamic and colloidal interactions”, Journal of Multiphase Flow, 16, 639-649 (1990).
    22. Bachelor, G. K., “Sedimentation in a dilute polydisperse system of interacting spheres”, Journal of Fluid Mechanics, 119, 379 (1982).
    23. Bachelor, G. K., and J. T. Green, “The hydrodynamic interaction of two small free-moving spheres in a linear floe field”, Journal of Fluid Mechanics, 56, 375-400 (1972).
    24. Saffman, P. G., and J. S. Turner, “On the collision of drops in turbulent clouds”, Journal of Fluid Mechanics, 1, 16-30 (1956).
    25. Pneuli, D., C. Gutfinger, and M. Fichman, “A turbulent-brownian model for aerosol coagulation”, Aerosol Science and Technology, 14, 201-209 (1991).
    26. Van der ven, T. G. M. and S. G. Mason, “The microrheology of colloidaldispersions:orthokinetic doublet formation of spheres”, Colloid
    Polymer Science, 255, 468-479 (1977).
    27. Smoluchowski, M., “Drei vorträge über diffusion brownsche bewegung und koagulation von kolloidteilchen,” Physik Z, 17, 557-589 (1916)
    28. Zhang, X. and R. H. Davis, “Polarized optical microscopy of anisotropic media imaging theory and simulation”, Journal of Fluid Mechanics, 230, 479-500 (1991).
    29. Sutheland, K. L., “Physical chemistry of flotation XI. kinetics of the flotation process”, Journal of Physical and Chemistry, 52,394-425 (1948).
    30. Phan, C. M., A. V. Nguyen, J. D. Miller, G. M. Evans, G. J. Jameson, “ Investigations of bubble–particle interactions”, International Journal of Mineral Process, 72, 239-254 (2003).
    31. Elimelech, M. ,J. Gregory, X. Jia, and R. A. Williams, “Particle deposition &
    aggregation:measurement,modeling and simulation”, BUTTER-WORTH
    HEINEMANN, 138-142 (1998).
    32. Chin, C. J., S. Yiacoumi, and C. Tsouris, “Shear-induced flocculation of colloidal particles in stirred tanks”, Journal of Colloid and Interface Science, 206, 532-545 (1998).
    33. Camp, T. R., and P. C. Stien, “Velocity gradients and internal work in fluid motion”, Journal of the Boston Society of Civil Engineers Section, American Society of Civil Engineers, 30, 219-238 (1943).
    34. Melik, D. H., and H. S. Fogler, “Gravity-induce flocculation”, Journal of Colloid and Interface Science, 101, 72-83(1998).
    35. 彭騰輝,“以理論分析靜態溶液中具布朗運動膠體凝絮沉降的現象”,東海大學化學工程研究所碩士論文(2005)。
    36. Tsouris, C., S. Yiacoumi, and D. A., Rountree, “Mechanism of particle flocculation by magnetic seeding” , Journal of Colloid and Interface Science, 184, 1-12 (1996).
    37. Han, M. Y., and D. F. Lawler, “The insignificance of G in flocculation”, Journal
    of AWWA, 84, 79-91 (1992).
    38. Kobayashi, M., and Y. Adachi, “Kinetic of coagulationof model colloidal particles in a turbulent flow”, Transactions in JSIDRE, 191, 111-115 (1997).
    39. Finch, J. A., and G. S. Dobby, “Column flotation”, Pergamon Oxford,180 pp (1990).
    40. 劉義賢,“駐波場中次微米微粒聚結之研究”,國立臺灣大學應用力學研究所
    碩士論文(2003).
    41. Curtis, A. S. G., L. M. Hocking, “ Collision efficiency of equal spherical particles in a shear flow: the influence of London-Van der Waals forces ”, Journal of Transaction Faraday Society, 66, 1381-1390 (1970).

    QR CODE
    :::