| 研究生: |
林玲珠 Ling-Chu Lin |
|---|---|
| 論文名稱: |
表面改質之多孔洞吸附介質對特定污染物吸附之研究 Formation of functionalized mesoporous silicas and factors affecting adsorption of heavy metal from aqueous solution |
| 指導教授: |
李俊福
Jiunn-Fwu Lee |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 191 |
| 中文關鍵詞: | 多孔性吸附介質 、影響因子 、改質 、表面鑑定 、吸附 、聚合作用 |
| 外文關鍵詞: | mesoporous materials, control factor, functionalization, surface characterization, adsorption capacity, polymerization |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般多孔性吸附介質孔洞常具備大小分佈不均、比表面積不夠高,且對特定金屬無選擇性等缺失。本研究透過不同條件合成多孔洞吸附材料,並藉由改變不同改質影響因子,如水分子效應、溶劑效應、官能基濃度及種類等,以瞭解各項影響因子對官能基於多孔洞材料鍵結率之影響,藉此探討多孔性介質之孔洞大小、比表面積變化、表面結構之差異、官能基之鍵結量多寡與不同改質方法於混合液中對特定金屬 (Hg2+、Ag+) 之選擇性吸附效果,以達到合成對特定重金屬吸附能力良好之吸附介質,解決對環境有害之重金屬污染問題。
改質前後之多孔性吸附介質分別以TGA、EA、BET、FTIR、13C NMR、及SEM等儀器進行表面特性鑑定,探討不同影響因子及官能基對吸附介質特性之影響。經BET表面鑑定,改質前C9及C16孔徑分別為2.43nm及3.18nm比表面積為981.65m2/g及1,013.28m2/g。改質前吸附等溫線為第IV型,改質後因孔洞為官能基所阻塞,而轉變為第II型,類似非孔洞材料。由13C NMR及FT-IR可以確認本研究已成功將巰基、氨基及氰基等官能基接枝於多孔洞吸附介質表面,其中以孔洞大小及水份含量影響接枝率最大。EA鑑定結果,官能基覆蓋率亦相當高,平均鍵結率可高達2.0 mmol SH/g,其中又以C9-SAnC (11.37%; 3.55 mmol SH/g) 最高。
本研究對Hg2+的吸附量以C16-SHC最高,達126.58 mg/g (0.63mmol/g)。Hg2+/S莫耳比以C16-SHC的0.62為最高,其次為C16-SAnC的0.44。經評估各項影響影響因子,以溶劑之影響最為重要,其次為孔徑大小,C16-SHC吸附介質表面官能基以單層鍵結之型態居多,其飽和吸附量為其他多孔性吸附介質所無法比擬。對Ag+離子所進行之吸附實驗結果,除了C9-LHT吸附量最少為71.94 mg/g (0.67 mmol/g)外,其餘多孔洞吸附介質吸附量均大於1.0 m mol/g,尤其以C16-SHT之吸附量更高達250.00 mg/g (2.32mmol/g),遠大於目前文獻發表的任何多孔性吸附劑之吸附量。以Freundlich 模式擬合較Langmuir模式更適合用來描述未改質C9及C16之吸附行為,且改質後之多孔洞吸附劑較適合以Langmuir模式來描述吸附Ag+、Hg2+離子之吸附平衡等溫線,而改質後多孔洞吸附劑對Ag+之吸附動力模式則以擬二階擬合最為合適。
本研究不論是於何種改質條件下進行改質,改質後多孔洞吸附介質對Hg2+及Ag+離子吸附量均較未改質增加百倍以上。顯示本研究所開發的合成及改質方法能夠成功合成對特定金屬具極高親和力的多孔性吸附介質,而吸附Hg2+或Ag+之改質多孔洞吸附劑後續亦能被應用於抑菌及環境衛生等方面。
Mesoporous materials lack for uniform pore-size distribution, ordered pore structure, and high surface area. Meosporous materials are also less selectivity toward heavy metal adsorption. This study described the effective synthesis of mesoporous materials by altering different synthesis parameters. Subsequently, the synthesized mesoporous materials were functionalized under different controlling factors, such as water effect, solvent effect, different functional groups and concentration of functional group to enhance the adsorption capacity toward metal ions such as Hg2+ and Ag+. In the same time, the effects of changing pore size, surface area, and morphology of the mesoporous material were also evaluated in this studied.
The before and after functionalized mesoporous materials were characterized by TGA, EA, BET, SEM, FT-IR, and 13C NMR to verify the effect of the controlling factors on the functionalized mesoporous material. The C9 and C16 had surface area of 981.62 m2/g and 1013.28 m2/g; pore size of 2.43nm and 3.18nm, respectively. The BET isotherms curve for the unmodified samples were typical type IV. The BET isotherms curve for functionalized samples, which might be caused by blocking pore channel, had been changed to type II. The characteristic FT-IR, and 13C NMR results showed that the functional group had been grafted to the surface of mesoporous successfully. The most important controlling factors for grafting density were pore size and water effect. The EA results showed that the amount of functional group grafted to the surface of mesoporous material were relatively high. The average density was 2.0 mmol SH/g, and C9-SAnC sample had the highest grafting amount (11.37%, 3.55mmol SH/g). The Freundlich model better described the unmodied samples adsorption behavior. However, the adsorption behaviors of the functionalized samples were better delineated by Langmuir model. The pseudo second order fitted the Ag+ adsorption kinetic model better.
The adsorption experiments results showed that the C16-SHC had the highest Hg2+ adsorption capacity of 126.58 mg/g (0.63mmol/g). The C16-SHC had the highest Hg2+/S molar ratio of 0.62. The C16-SAnC came in second of 0.44. The factors influence the adsorption capacity the most were solvent effect, and pore size. The average Ag+ adsorption capacity was 1.0 mmol/g. The C16-SHT had the highest adsorption capacity of 250.00 mg/g (2.32mmol/g). The C9-LHT had the lowest adsorption capacity 71.94 mg/g (0.67 mmol/g). The results were higher than those of other researchers’.
The adsorption capacity of functionalized mesoporous materials under all control factors were enhanced by two orders. This study developed the synthesis and functionalization method with high affinity toward adsorbing heavy metal successfully. The functionalized mesoporous material can be reused as bacteria inhibitor after adsorbing Hg2+ and Ag+ ions.
參考文獻
1. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lu, Q. Zhang, “Heavy metal removal from water/wastewater by nanosized metal oxides: A review” J. of Hazardous Materials, 211, 317– 331, (2012).
2. 行政院環境保護署土壤及地下水污染整治基金管理委員會, “96年度土壤及地下水污染整治年報”。
3. M. Noroozifar, M. Khorasani-Motlagh, M. N. Gorgij, and H. R. Naderpour, “Adsorption Behavior of Cr (VI) on Modified Natural Zeolite by A New Bolaform N,N,N,N,N,N-hexamethyl-1,9-nonane diammonium Dibromide Reagent.” J. Hazard. Mater. , 155, 566-571 (2008).
4. A. Guimarães, V. Ciminelli, W. Vasconcelos, “Smectite organofunctionalized with thiol groups for adsorption of heavy metal ions” App. Clay Sci., 42, 410-414, (2009).
5. Corma, A., “From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis” Chemical Reviews, 97, (6), 2373-2419 (1997).
6. Lim, M. H. and Stein, A., “Comparative Studies of Grafting and Direct Syntheses of Inorganic−Organic Hybrid Mesoporous Materials.” Chem. Mater., 11, 3285-3295 (1999).
7. Coronas J., “Present and Future Synthesis Challenges for Zeolite.” Chemical Engineering Journal, 156, 236–242 (2010).
8. U. Wingenfelder, B. Nowack, G. Furrer, R. Schulin, “Adsorption of Pb and Cd by amine-modified zeolite” Water Research, 39, 3287-3297, (2005).
9. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., “Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism” Nature, 359, 710-712 (1992).
10. I. Slowing, J. L. Vivero-Escoto, B. Trewyn, Vicotr S. –Y. Lin, “Mesoporous Silica Nanoparticles: structural design and applications” J. of Mater. Chem, 20, 7924-7937, (2010).
11. Feng, X., Fryxell, G. E., Wang, L. Q., Kim, A. Y., Liu, J. and Kemner, K. M., “Functionalized Monolayers on Ordered Mesoporous Supports.” Science, 276, 923-925 (1997).
12. G. E. Fryxell, “The synthesis of functional mesoporous materials—Mini review” Inorg. Chem. Commun., 9, 1141-1150, (2006).
13. R. H. Crabtree, “The Organometallic Chemistry of the Transition Metals”, 5th edition, John Wiley and son, Inc., 2009, 8.
14. IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, “Colloid and Surface Chemistry.” Pure Appl. Chem., 31, 578 (1972).
15. Chen, N. Y.; Lucki, S. J.; Garwood, W. E. U.S. Pat. 3,700,585, Oct. 24, 1972, Filed on Oct. 10, 1969.
16. WiKi homepage: http://en.wikipedia.org/wiki.zeolite.
17. McBain, J. W., “The Sorption of Gases and Vapours by Solid” Rutledge and Sons, London, Ch 5 (1932).
18. T. Yanagisawa, T. Shimizu, K. Kuroda and C. Kato, "Trimethylsilyl Derivatives of AlkyltrimethylammoniumJanemite complexes and their Conversion to microporous SiO2 Materials” Bull. Chem. Soc. Jpn., 63, 988-992 (1990).
19. P. Selvam, S.K. Bhatia, C.G. Sonwane, Industrial & Engineering Chemistry Research, 40, 3237 (2001).
20. P. T. Tanev and T. J. Pinnavaia, “A Neutral Templating Route to Mesoporous Molecular Sieves” Science, 267, 865 (1995).
21. S. Inagaki; Y. Fukushima,; K. J. Kuroda, “Synthesis of Highly Ordered Mesoporous Materials from a Layered Polysilicate” Chem. Soc., Chem. Commun, 680-682 (1993).
22. A. Galarneau, A. Barodawalla, T. J. Pinnavaia, “Porous Clay Heterostructures formed by gallery-templated synthesis” Nature, 374, 529-531 (1995).
23. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores” Science, 279, 548 (1998).
24. G.J.D. Soler-illia, C. Sanchez, B. Lebeau, J. Patarin, “Chemical Strategies To Design Textured Materials: from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures” Chem. Rev., 102, 4093-4138, (2002).
25. Huo, Q. S., Leon, R., Petroff, P. M. and Stucky, G. D., “Mesostructure Design with Gemini Surfactants - Supercage Formation in a 3-Dimensional Hexagonal Array.” Science, 268, (5215), 1324-1327 (1995).
26. Bagshaw, S. A., Prouzet, E. and Pinnavaia, T. J., “Templating of Mesoporous Molecular-Sieves by Nonionic Polyethylene Oxide Surfactants.” Science, 269, (5228), 1242-1244 (1995).
27. Sun, T. and Ying, J. Y., “Synthesis of Microporous Transition Metal Oxide Molecular Sieves with Bifunctional Templating Molecules.” Angewandte Chemie-International Edition, 37, (5), 664-667 (1998).
28. Antonelli, D. M. and Ying, J. Y., “Synthesis of A Stable Hexagonally Packed Mesoporous Niobium Oxide Molecular Sieve Through A Novel Ligand-assisted Templating Mechanism.” Angewandte Chemie-International Edition in English, 35, (4), 426-430 (1996).
29. M. Barczak, A. Dabrowski, S. Pikus, J. Ryczkowski, P. Borowski, M. Kozak, “Studies of the structure and chemistry of SBA-15 organosilicas functionalized with amine, thiol, vinyl and phenyl groups” Adsorption, 16, 457–463 (2010).
30. X. Du and J. He, “Elaborate control over the morphology and structural of mercapto-functionalized mesoporous silicas as multipurpose carriers”, The Royal Society of Chem., 39, 9063-9072 (2010)
31. Beck, J. S.; Vartuli, J. C., Recent advances in the synthesis, characterization and applications of mesoporous molecular sieves. Current Opinion in Solid State & Materials Science, 1, 76-87 (1996)
32. Huo, Q. S., Margolese, D. I., Ciesla, U., Feng, P. Y., Gier, T. E., Sieger, P., Leon, R., Petroff, P. M., Schuth, F. and Stucky, G. D., “Generalized Synthesis of Periodic Surfactant Inorganic Composite-Materials.” Nature, 368, (6469), 317-321 (1994).
33. Steel, A., Carr, S. W. and Anderson, M. W., “N-14 NMR-Study of Surfactant Mesophases in the Synthesis of Mesoporous Silicates.” Journal of the Chemical Society-Chemical Communications, 13, 1571-1572 (1994).
34. Monnier, A., “Cooperation Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructure.” Science, 261, 1299-1303 (1993).
35. Matijasic, A., Voegtlin, A. C., Patarin, J., Guth, J. L. and Huve, L., “Room-temperature Synthesis of Silicate Mesoporous Materials. An in Situ Study of the Lamellar to Hexagonal Phase Transition.” Chem. Commun., 10, 1123-1124 (1996).
36. N. Y. Chen,” The Prospective Application of Molecular Sieves Catalysts in Chemical Industry” CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI), 58, 549-559(2000)
37. S. A. Idris, Christine M. Davidson, Colm McManamon, Michael A. Morris, Peter Anderson, Lorraine T. Gibson, “Large pore diameter MCM-41 and its application for lead removal from aqueous media” J. Hazardous Material, 185, 898-904, (2011).
38. G. E. Fryxell, S. V. Mattigod, Y. Lin, H. Wu, S. Fiskum, K. Parker, F. Zheng, W. Yantasee, T. S. Zemanian, R. S. Addleman, J. Liu, K. Kemner, S. Kelly and X. Feng, “Design and synthesis of self-assembled monolayers on mesoporous supports (SAMMS): The importance of ligand posture in functional nanomaterials” J. Mater. Chem., 17, 2863-2874(2007)
39. Chong, A. S. Maria. and Zhao, X. S., “Functionalization of SBA-15 with APTES and Characterization of Functionalized Materials.” J. Phys. Chem. B, 107, 12650-12657 (2003).
40. Stein, A., Melde, B. J. and Schroden, R. C., “Hybrid Inorganic–Organic Mesoporous Silicates—Nanoscopic Reactors Coming of Age.” Adv. Mater., 12, 1403-1419 (2000).
41. Liu, J., Feng, X., Fryxell, G. E., Wang, L. Q., Kim. A. Y. and Gong, M. L., “Hybrid Mesoporous Materials with Functionalized Monolayers.” Adv. Mater., 10, 161-165 (1998).
42. Davis, M. E., Chen, C. Y., Burkett, S. L. and Li, H. X., “Studies on Mesoporous Materials: I. Synthesis and Characterization of MCM-41” Microporous Materials.”, 2, 17-26 (1993).
43. D. Brühwiler, “Postsynthetic funtionization of mesoporous silica” Nanoscale, 2 (2010) 887-892.
44. S. R. Wasserman, G.M. Whitesides, I.M. Tidswell, M. Ocko, P.S.Pershan, J.D. Axe, J. Am. Chem. Soc. 111, 5852–5861 (1989).
45. Louis Mercier and Thomas J. Pinnavaia, “Heavy metal ion adsorbents formed by the grafting of a Thiol functionality to mesoporous silica molecular sieves: factors affecting Hg(II) uptakes” Environ. Sci. Technol., 32, 2749-2754. (1998)
46. Huiling Zhao, Yanhui Ma, Jing Tang, Jun Hu and Honglai Liu, “Influence of the solvent properties on MCM-41 surface modification of Aminosilanes.” J. Solution Chem. 40, 740-749, (2011).
47. S. Zheng, L. Gao, Q.H. Zhang, J.K. Guo, Journal of Materials Chemistry 10 (2000) 723.
48. Minghui Hu, Suguru Noda, Tatsuya Okubo, Yukio Yamaguchi, Hiroshi Komiyama, “Structers and morphology of self-assembled 3-mercaptopropyltrimethoxysilane layers on silicon oxide” Applied surface science, 181, 307-316, (2001).
49. Brian G. Trewyn, Igor I. Slowing, Supratim Giri, Hung-Ting Chen and Victor S. –Y. Lin., Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and application in controlled release, Acc. Chem. Res., 40, 846-853 (2007) .
50. E. M. Arnett, K. F. Cassidy, “A Thermochemical comparison of silica with other homogeneous acids”, Rev. Chem. Intermed. 9, 27-64, (1988)
51. W. B. Jensen, K. L. Mittal, K. R. Anderson, “Acid-Base-Interactions: Relevance to Adhesion Science and Technology, 3-23, VSP, Utrecht (1991)
52. Y. Zimmermann, S. Anders, K. Hofmann, and S. Spange, “Influence of Chemical Solvent Properties on the External and Internal Surface Polarity of Silica Particles in Slurry” Langmuir, 18, 9578-9586 (2002)
53. J. Duchet, B. Chabert, J.P. Chapel, J.F. Gérard, J.M. Chovelon, , N. Jaffrezic-Renault, “Influence of the deposition process on the structure of grafted alkylsilane layers” Langmuir 13, 2271–2278 (1997)
54. Hanzel, R. and Rajec, P., “Sorption of Cobalt on Modified Silica Gel Materials.” J. of Radioanalytical and Nuclear Chemistry, 246, 607-615 (2000).
55. Algarra, M., Jimenez, M. V., Enrique, R. C., Antonio, J. L. and Jose, J. J., “Heavy Metals Removal from Electroplating Wastewater by Aminopropyl-Si MCM-41.” Chemosphere, 59, 779-786 (2005)
56. Blitz, I. P., Blitz, J. P., Gun’ko, V. M. and Sheeran, D. J., “Functionalized silicas: Structural Characteristics and Adsorption of Cu(II) and Pb(II).” Colloids and Surfaces A: Physicochem. Eng. Aspects, 307, 83-92 (2007).
57. Saad, R., Hamoudi, S. and Belkacemi, K., “Adsorption of Phosphate and Nitrate Anions on Ammonium-functionnalized Mesoporous Silicas.” J. porous Mater, 15, 315-323 (2008).
58. Qin, Q., Ma, J. and Liu, K., “Adsorption of Anionic Dyes on Ammonium-functionalized MCM-41.” J. Hazard. Mater. , 162, 133-139 (2009).
59. A. Heidari, H. Younesi, and Z. Mehraban, “Removal of Ni (II), Cd (II), and Pb (II) from A Ternary Aqueous Solution by Amino Functionalized Mesoporous and Nano Mesoporous Silica.” Chemical Engineering Journal, 153, 70-79 (2009).
60. Wang, G., Amy, N. O., Elizabeth, A. B., Kelley, D., Tao, Z. and Tewodros, A., “Functionalized Mesoporous Materials for Adsorption and Release of Different Drug Molecules: A Comparative Study.” Journal of Solid State Chemistry, 182, 1649-1660 (2009).
61. Mohan, D. and Pittman, C. U., “Activated Carbons and Low Cost Adsorbents for Remediation of Tri- and Hexavalent Chromium from Water.” J. Hazard. Mater., 137, (2), 762-811 (2006).
62. A.R. Flegal, C.L. Brown, S. Squire, J.R.M. Ross, G.M. Scelfo, S. Hibdon, “Spatial and temporal variations in silver contamination and toxicity in San Francisco Bay” Envir. Res., 105, 34-52(2007)
63. Murray, B. M., “Environmental Chemistry of Soils.” Oxford University Press, New York (1994).
64. IUPAC Recommendations Pure Appl. Chem. 57, 603(1985)
65. IUPAC Recommendations Pure Appl. Chem. 66, 1739(1994)
66. F. Rouquerol, J. Rouquerol. K. Sing, “Adsorption by powders & Porous Solids, Academic Press: San Diego, 1999.
67. Pearson, G. R., “Hard and Softs Acids and Bases.” J. Am. Chem. Soc., 85, 3533-3539 (1963).
68. R. H. Crabtree, The Organometallic Chemistry of the Transition Metals, 5th edition, John Wiley and son, Inc., 8 (2009)
69. R. M. Silverstein, F. X. Webster, D. J. Kiemle, Spectrometric Identification of Organic Compound 7th edition, John Wiley and son, Inc., 105-107 (2005)
70. E. Pretsch, P. Bühlmann, C. Affolter, Structure Determination of Organic Compounds-Table of Spectral Data, Springer, 128 (2000)
71. Rhijn, V., W. M., De Vos, D. E., Sels, B. F., Bossaert, W. D. and Jacobs, P. A., “Sulfonic Acid Functionalised Ordered Mesoporous Materials as Catalysts for Condensation and Esterification Reactions.”, Chem. Commun, (3), 317-318 (1998).
72. M. K. L. Cheung, D. Trau, K. L. Yeung, Carles, and N. J. Sucher, “5’-Thiolated Oligonucleotides on (3-Mercaptopropyl) trimethoxysilane-Mica: Surface Topography and Coverage”, Langmuir, 19, 5846-5850, (2003).
73. Llewellyn, P. L.; Grillet, Y.; Rouquerol, J., Effect of T(Iii) Zoning in Mfi-Type Zeolites on the Adsorption-Isotherm and Differential Enthalpies of Adsorption at 77-K. Langmuir, 10, (2), 570-575 (1994)
74. Llewellyn, P. L.; Pellenq, N.; Grillet, Y.; Rouquerol, F.; Rouquerol, J., Quasi-Equilibrium Adsorption Gravimetry of Water on Mfi-Type and Fer-Type Zeolites and on an Afi-Type Aluminophosphate. Journal of Thermal Analysis 1994, 42, (5), 855-867.
75. K. K. Sharma, A. Anan, R. P. Buckley, W. Ouellette, and T. Asefa, “Toward Efficient Nanoporous Catalysts: Controlling Site-Isolation and Concentration of Grafted Catalytic Sites on Nanoporous Materials with Solvents and Colorimetric Elucidation of Their Site-Isolation” J. Am. Chem. Soc. 130, 218-228(2008)
76. Ho, Y. S., and G. Mckay, “ Pseudo-second order model for sorption process,” Process Biochemistry, 34, 451-465(1999a).
77. Ho, Y. S., and G. Mckay, “ Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash,” J. Environmental Science and Health, A34, 1179-1204(1999b).
78. Mackay, D., and W. Y. Shiu, “A Critical Review of Henry’ Law Constants for Chemicals of Environmental Interest,” J. Phys. Chem. Ref. Data, 10(4), 1175-1199 (1981).
79. Juang, R. S., F. C. Wu, and R. L. Tseng, “ Mechanism of adsorption of dyes and phenols from water using activated carbons prepared from plum kernels,” J. Colloids and Interface Science., 227, 437-444(2000).
80. C. McManamon, A. M. Burke, J. D. Holmes, M. A. Morris, “Amine-functionalised SBA-15 of tailored pore size for heavy metal adsorption” J.of Col. and Inter. Sci., 369, 330–337(2012).