| 研究生: |
廖元邦 Benjamin Yuan-Bang Liau |
|---|---|
| 論文名稱: |
蛋白磷酸激酶A 與蛋白磷酸激酶C epsilon 參與在 酸以及溶血磷脂質引起的疼痛敏感現象 Protein Kinase A and Protein Kinase C epsilon Are Involved in Acid- and Lysophospholipids-induced Hyperalgesia |
| 指導教授: |
孫維欣
Wei-Hsin Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 痛覺 、蛋白磷酸激酶 、疼痛敏感 |
| 外文關鍵詞: | pain, protein kinase, hyperalgesia |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
痛覺是ㄧ種當身體受到環境中的有害刺激時,所產生的一種不舒服的重要感
覺,也是警告我們身體遭受到傷害,必須規避或治療的一種保護機制。
前人研究發現在海藻醣引發的預發炎模式中,蛋白激酶A 與Cε 可能扮演在
急性疼痛轉為慢性疼痛的關鍵角色。此外,組織酸化被認為是造成疼痛的主要原
因之一,但目前還不清楚的是因組織酸化而引起疼痛是透過怎麼樣的下游機制。
此外細胞內的溶血磷脂質是否能引發痛覺,會參與在哪類痛覺的機制中,也仍然
尚未被釐清。
我探究的方式是在小鼠的後肢腳掌皮下注射酸性緩衝溶液與三種溶血磷脂
質,並且分別在各組實驗裡另注射不同訊號傳遞路徑的抑制劑。注射後在不同的
時間點分別用馮法瑞尼龍測量絲以及哈格里夫斯熱感測試儀來做測試,觀察機械
性疼痛和熱感刺激疼痛是否被下游路徑的抑制劑所抑制,以及抑制的程度與時間
區段。實驗發現注射酸以及三類溶血磷脂質都造成機械性與熱感痛覺敏感性增強
的現象並持續超過一天。另外發現蛋白激酶A 的抑制劑、AC 之阻斷劑會在疼痛
敏感性上升的初期有抑制作用;蛋白激酶Cε 的抑制劑、Gi 之抑制劑、PLC 之阻
斷劑則會在疼痛敏感性上升的中期以後才有抑制作用。有關痛覺的離子通道方面
的ASICs 之阻斷劑、TRP 之阻斷劑,也能抑制機械性和熱感痛覺敏感性升高的
現象。期許在更多的痛覺機制被釐清之後,能被應用在研發緩和痛覺,副作用更
少的藥物上。
Abstract
Pain is a complex experience that involves the transduction of noxious
environmental stimuli. The ability to detect noxious stimuli is essential to an
organism's survival and wellbeing.
Some studies have demonstrate that in carrageenan-induced priming state protein
kinase A and Cε play critical roles in the transition from acute pain to chronic pain. A
decrease in tissue pH has been observed following inflammation, hematomas, and
isometric exercise. A positive correlation exists between pain and local acidity.
However, the downstream mechanism of proton-induced pain remains unclear.
Furthermore, the regulatory pathway between lysophospholipids and pain has not
been investigated completely.
To answer these questions, I used mechanical and thermal tests in different time
period to examine the hyperalgesia induced by acidic solution, psychosine,
lysphosphatidylcholine and sphingosylphosphatidylcholine. In addition, protein
kinase A inhibitor and adenylyl cyclase blocker inhibit hyperalgesia in the early stage,
but protein kinase Cε inhibitor, Gi inhibitor and phospholipase C blocker inhibit
hyperalgesia in the middle and late stage. Transient receptor potential family blocker
and acid-sensing ion channel blocker also inhibit acid-induced mechanical and
thermal hyperalgesia. I wish these studies can be used in pain curation in the future.
1. Aley, K.O. and Levine, J.D. (1999). Role of protein kinace A in the maintenance
73
of inflammatory pain. The Journal of Neuroscience. 19: 2181-2186.
2. Aley, K.O., Messing. R.O., Mochly-Rosen, D., Levine, J.D. (2000). Chronic
hypersensitivity for inflammatory nociceptor sensitization mediated by the epsilon
isozyme of protein kinase C. The Journal of Neuroscience. 20 : 4680-4685.
3. Amadesi, S., Cottrell, G.S., Divino, L., Chapman, K., Grady, E.F., Bautista, F.,
Karanjia, R., Barajas-Lopez, C., Vanner, S., Vergnolle, N., Bunnett, N.W. (2006).
Protease-activated receptor 2 sensitizes TRPV1 by protein kinase Cepsilon- and
A-dependent mechanisms in rats and mice. J. Physiol. 575: 555-571.
4. An, S., Goetzl, E.J., Lee, H. (1998). Signaling mechanisms and molecular
characteristics of G protein-coupled receptors for lysophosphatidic acid and
sphingosine 1-phosphate. J. Cell Biochem Suppl. 30-31: 147-157.
5. Anliker, B., Chun, J. (2004). Cell surface receptors in lysophospholipid signaling.
Semin Cell Devl Biol. 15: 457-465.
6. Anliker, B., Chun, J. (2004). Lysophospholipid G Protein-coupled Receptors. J.
Biol. Chem. 279: 20555-20558.
7. Basbaum, A.I., Bautista, D.M., Scherrer, G., Julius, D. (2009) Cellular and
molecular mechanisms of pain. Cell. 139: 267-284.
8. Bevan, S. and Yeast, J. (1992). Protons activate a cation conductance in a
sub-population of rat dorsal root ganglion neurons. J. Physiol. 433: 145-161.
74
9. Bhave, G., Gereau, R.W. 4th. (2004) Posttranslational mechanisms of peripheral
sensation. The Journal of Neurobiology. 61: 88-106.
10. Bitar, K.N. and Yamata, H. (1995). Modulation of smooth muscle contraction
by sphingosylphosphorylcholine. American Journal of Phisiology. 269: 370-377.
11. Bockaert, J., Perroy, J., Becamel, C., Marin, P., Fagni, L. (2010). GPCR
interacting proteins (GIPs) in the nervous system: Roles in physiology and
pathologies. Annu Rev Pharmacol Toxicol. 50: 89-109.
12. Boguslawski, G., Lyons, D., Harvey, K.A., Kovala, A.T. and English, D. (2000).
Sphingosylphosphorylcholine Induces Endothelial Cell Migration and Morphogenesis.
Biochemical and Biophysical Research Communications. 272: 603-609.
13. Booden, M.A., Siderovski, D.P., Der, C.J. (2002). Leukemia-associated Rho
guanine nucleotide exchange factor promotes G alpha q-coupled activation of RhoA.
Mol Cell Biol. 22: 4053-4061.
14. Casey, B.J., Jones, R.M. (2010). Neurobiology of the adolescent brain and
behavior: implications for substance use disorders. J Am Acad Child Adolesc
Psychiatry. 49: 1189-1220.
15. Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D.,
Julius, D. (1997) The capsaicin receptor: a heat-activated ion channel in the pain
pathway. Nature. 389: 816-824.
75
16. Cesare, P., Dekker, L.V., Sardini, A., Parker, P.J., McNaughton, P.A. (1999).
Specific involvement of PKC-epsilon in sensitization of the neuronal response to
painful heat. Neuron. 23: 617-624.
17. Chisolm, G.M. and Steinberg, D. (2000). The oxidative modification hypothesis
of atherogenesis: an overview. Free Radical Biology and Medicine. 28: 1815-1826.
18. Clair, T., Aoki, J., Koh, E., Bandle, R.W., Nam, S.W., Ptaszynska, M.M., Mills,
G.B., Schiffmann, E., Liotta, L.A., Stracke, M.L. (2003). Autotaxin Hydrolyzes
Sphingosylphosphorylcholine to Produce the Regulator of Migration,
Sphingosine-1-Phosphate. Cancer Res. 63: 5446-5453.
19. Colles, S.M. and Chisolm, G.M. (2000). Lysophosphatidylcholine-induced
cellular injury in cultured fibroblasts involves oxidative events. J. Lipid Res. 41:
1188–1198.
20. Corey, D.P. and Garcia-Anoveros, J. (1996). Mechanosensation and the
DEG/ENaC ion channels. Science. 273: 361-364.
21. Davis, J.B., Gray, J., Gunthorpe, M.J., Hatcher, J.P., Davey, P.T., Overend, P.,
Harries, M.H., Latcham, J., Clappham, C., Atkinson, K., Hughes, S.A., Rance, K.,
Grau, E., Harper, A.J., Pugh, P.L., Rogers, D.C., Bingham, S., Randall, A.,
Sheardown, S.A. (2000). Vanilloid receptor-1 is essential for inflammatory thermal
hyperalgesia. Nature. 405: 183-187.
76
22. Desai, N.N., Carlson, R.O., Mattie, M.E., Olivera, A., Buckley, N.E., Seki, T.,
Brooker, G., Spiegel, S. (1993). Signaling Pathways for
Sphingosylphosphorylcholine-mediated Mitogenesis in Swiss 3T3 Fibroblasts. The
Journal of Cell Biology. 121: 1385-1395.
23. Ding, W.G., Toyoda, F., Ueyama, H., Matsuura, H. (2011).
Lysophosphatidylcholine enhances I(Ks) currents in cardiac myocytes through
activation of G protein, PKC and Rho signaling pathways. Journal of Molecular and
Cellular Cardiology. 50: 58-65.
24. Dray, A., Urban, L., Dickenson, A. (1994) Pharmacology of chronic pain.
Trends Pharmacol Sci. 12: 190-197.
25. Dray, A. (1995). Imflammatory mediators of pain. British Journal of
Anaesthesia. 75: 125-131.
26. Eglen, R.M., Bosse, R., Reisine, T. (2007). Emerging concepts of guanine
nucleotide-binding protein-coupled receptor (GPCR) function and implications for
high throughput screening. Assay Drug Dev Technol. 5: 425-451.
27. Hall, S.M., Gregson, N.A. (1971). The in Vivo and Ultrastructural Effects of
Injection of Lysophosphatidyl Choline into Myelinated Peripheral Nerve Fibres of the
Adult Mouse. J. Cell Sci. 9: 769-789.
28. Ichioka, T., Kishimoto, Y. and Yeager, A.M. (1987). Simultaneous
77
determination of psychosine and cerebrosides. Analytical Biochemistry. 166: 178-182.
29. Im, D., Heise, C.E., Nguyen, T., O'Dowd, B.F. and Lynch, K.R. (2001).
Identification of a molecular target of psychosine and its role in globoid cell
formation. J. Cell Biology. 153: 429-434.
30. Im, D. (2005). Two ligands for a GPCR, proton vs lysolipid. Acta
Pharmacologica Sinica. 26: 1435-1441.
31. Inoue, M., Rashid, M.H., Fujita, R., Contos, J.J., Chun, J., Ueda, H. (2004).
Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat
Med. 10: 712-718.
32. Inoue, M., Ma, L., Aoki, J., Chun, J. and Ueda, H. (2008). Autotaxin, a synthetic
enzyme of lysophosphatidic acid (LPA), mediates the induction of nerve-injured
neuropathic pain. Molecular Pain. 4: 1-6.
33. Inoue, M., Ma, L., Aoki, J., Chun, J., Ueda, H. (2008). Autotaxin, a synthetic
enzyme of lysophosphatidic acid (LPA), mediates the induction of nerve-injured
neuropathic pain. Mol Pain. doi: 10.1186/1744-8069-4-6.
34. Inoue, M., Xie, W., Matsushida, Y., Chun, J., Aoki, J., Ueda, H. (2008).
Lysophosphatidylcholine induces neuropathic pain through an action of autotaxin to
generate lysophosphatidic acid. Neuroscience. 152: 296-298.
35. Inoue, M., Ma, L., Aoki, J., Ueda, H. (2008). Simultaneous stimulation of spinal
78
NK1 and NMDA receptors produces LPC which undergoes ATX-mediated
conversion to LPA, an initiator of neuropathic pain. J. Neurochem. 107: 1556-1565.
36. Ishii, I., Fukushima, N., Ye, X.Q., Chun, J. (2004). Lysophospholipid receptors -
signaling and biology. Annu. Rev. Biochem. 73: 321-354.
37. Jones, N.G., Slater, R., Cadiou, H., McNaughton, P. and McMahon, S.B. (2004).
Acid-induced pain and its modulation in humans. J. Neurosci. 24: 10974-10979.
38. Julius, D. and Basbaum, A.I. (2001). Molecular mechanisms of nociception.
Nature. 413: 203-210.
39. Kabarowski, J.H., Zhu, K., Le, L.Q., Witte, O.N., Xu, Y. (2001).
Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A. Science.
293: 702-705.
40. Khasar, S.G., Gold, M.S., Levine, J.D. (1998). A tetratoxin-resistant sodium
current mediates inflammatory pain in the rat. Neurosci Lett. 256: 17-20.
41. Kidd, B.L., Urban, L.A. (2001). Mechanisms of inflammatory pain. Br J
Anaesth. 87: 3-11.
42. Kress, M., Reeh, P.W., Vyklicky, L. (1997). An interaction of inflammatory
mediators and protons in small diameter dorsal root ganglion neurons of the rat.
Neurosci. Lett. 224: 37-40.
43. Mair, N., Benetti, C., Andratsch, M., Leitner, M.G., Constantin, C.E.,
79
Camprubi-Robles, M., Quarta, S., Biasio, W., Kuner, R., Gibbins, I.L., Kress, M.,
Haberberger, R.V. (2011). Genetic Evidence for Involvement of Neuronally
Expressed S1P1 Receptor in Nociceptor Sensitization and Inflammatory Pain. PLoS
One. 6: 1-12.
44. Meyer zu Heringdorf, D., Himmel, H.M., Jakobs, K.H. (2002).
Sphingosylphosphorylcholine - biological functions and mechanisms of action.
Biochimica et Biophysica Acta. 1582: 178-189.
45. Millan, M.J. (1999). The induction of pain: an integrative review. Neurobiology.
192: 444-462.
46. Millan, M.J. (2002). Descending control of pain. Progress in Neurobiology. 66:
355-474.
47. Moolenaar, W.H. (1995). Lysophosphatidic Acid, a Multifunctional
Phospholipid Messenger. J. Biol. Chem. 270: 12949-12952.
48. Moriyana, T., Higashi, T., Togashi, K., Iida, T., Segi, E., Sugimoto, Y.,
Tominaga, T., Narumiya, S., Tominaga, M. (2005) Sensitization of TRPV1 by EP1
and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol. Pain. 1: 3.
49. Murugesan, G. and Fox, P.L. (1996). Role of lysophosphatidylcholine in the
inhibition of endothelial cell motility by oxidized low density lipoprotein. J Clin
Invest. 97: 2736-2744.
80
50. Nishizuka, Y. (1992). Intracellular Signaling by Hydrolysis of Phospholipids
and Activation of Protein Kinase C. Science. 258: 6076-14.
51. Nixon, G.F., Mathieson, F.A., Hunter, I. (2008). The multi-functional role of
sphingosylphosphorylcholine. Prog Lipid Res. 47: 62-75.
52. Olah, Z., Karai, L., Iadarol,a M.J. (2002). Protein kinase C(alpha) is required for
vanilloid receptor 1 activation. Evidence for multiple signaling pathways. J Biol
Chem. 277: 35752-35759.
53. Pages, C., Simon, M.F., Valet, P., Saulnier-Blache, J.S. (2001).
Lysophosphatidic acid synthesis and release. Prostaglandins Other Lipid Mediat. 64:
1-10.
54. Pan, H.L., Zhang, Y.Q., Zhao, Z.Q. (2010). Involvement of lysophosphatidic
acid in bone cancer pain by potentiation of TRPV1 via PKC(epsilon) pathway in
dorsal root ganglion neurons. Pan et al. Molecular Pain. 6: 85-95.
55. Parada, C.A., Yeh, J.J., Reichling, D.B., Levine, J.D. (2003). Transient
attenuation of protein kinase Cepsilon can terminate a chronic hyperalgesic state in
the rat. Neuroscience. 120: 219-226.
56. Price, M.P., McIlwrath, S.L., Xie, J.H., Cheng, C., Qiao, J., Tarr, D.E., Sluka,
K.A., Brennan, T.J., Lewin, G.R., Welsh, M.J. (2001). The DRASIC Cation Channel
Contributes to the Detection of Cutaneous Touch and Acid Stimuli in Mice. Neuron.
81
32: 1071-1083.
57. Probst, W.C., Snyder, L.A., Schuster, D.I., Brosius, J., Sealfon, S.C. (1992).
Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol. 11:
1-20.
58. Pyne, S., Pyne, N. (2000). Sphingosine 1-phosphate signalling via the
endothelial differentiation gene family of G-protein-coupled receptors. Pharmacol
Ther. 88: 115-131.
59. Reichling, D.B., Levine, J.D. (2009). Critical role of nociceptor plasticity in
chronic pain. Trends Neurosci. 32: 611-618.
60. Sachs, D., Villarreal, C.F., Cunha, F.Q., Parada, C.A., Ferreira, S.H. (2009). The
role of PKA and PKC epsilon pathways in prostaglandin E2-mediated
hypernociception. British Journal of Pharmacology. 156: 826-834.
61. Sautel, M., Milligan, G. (2000). Molecular manipulation of G-protein-coupled
receptors: a new avenue into drug discovery. Curr Med Chem. 7: 889-896.
62. Scholz, J. and Woolf, C.J. (2002). Can we conquer pain? Nature Neuroscience.
5: 1062-1067.
63. Sluka, K.A., Kalra, A., Moore, S.A. (2001). Unilateral intramuscular injections
of acidic saline produce a bilateral, long-lasting hyperalgesia. Muscle Nerve. 24:
37-46.
82
64. Staniland, A.A., McMahon, S.B. (2009). Mice lacking acid-sensing ion channels
(ASIC) 1 or 2, but not ASIC3, show increased pain behaviour in the formalin test. Eur
J Pain. 13: 554-563.
65. Steen, K.H., Reeh, P.W., Anton, F. and Handwereker, H.O. (1992). Protons
selectively induce lasting excitation and sensitization to mechanical stimulation of
nociceptor in rat skin, in vitro. J. Neuroscience. 12: 86-93.
66. Steen, K.H., Steen, A.E. and Reeh, P.W. (1995). A Dominant Role of Acid pH
in Inflammatory Excitation and Sensitization of Nociceptors in Rat Skin, in vitro. J.
Neuroscience. 15: 3982-3985.
67. Steen, K.H. and Reeh, P.W. (1996). Tissue acidosis in nociception and pain.
Brain Research. 113: 143-151.
68. Steen, K.H., Steen, A.E., Kreysel, H.W., Reeh, P.W. (1996). Inflammatory
mediators potentiate pain induced by experimental tissue acidosis. Pain. 66: 163-170.
69. Strader, C.D., Fong, T.M., Graziano, M.P., Tota, M.R. (1995). The family of
G-protein-coupled receptors. FASEB J. 9: 745-754.
70. Sun, R.Q., Tu, Y.J., Lawand, N.B., Yan, J.Y., Lin, Q., Willis, W.D. (2004)
Calcitonin Gene-Related Peptide Receptor Activation Produces PKA- and
PKC-Dependent Mechanical Hyperalgesia and Central Sensitization. J Neurophysiol.
92: 2859-2866.
83
71. Taiwo, Y.O. and Levine, J.D. (1992). Serotonin is a directly-acting hyperalgesic
agent in the rat. Neuroscience. 48: 485-490.
72. van Meeteren, L.A., Ruurs, P., Christodoulou, E., Goding, J.W., Takakusa, H.,
Kikuchi, K., Perrakis, A., Nagano, T., Moolenaar, W.H. (2005). Inhibition of
autotaxin by lysophosphatidic acid and sphingosine 1-phosphate. J. Biol Chem. 280:
21155-21161.
73. Villarreal, C., Sachs, D., Cunha, F., Parada, C., Ferreira, S.H. (2009) The role of
PKA and PKCepsilon pathways in prostaglandin E2-mediated hypernociception. Br. J.
Pharmacol. 156: 826-834.
74. Voilley, N., Weille, J.D., Mamet, J., Lazdunski, M. (2001). Nonsteroid
anti-inflammatory drugs inhibit both the activity and the inflammation-induced
expression of acid-sensing ion channels in nociceptors. The Journal of Neuroscience.
21: 8026-8033.
75. Wakita, H., Matsushita, K., Nishimura, K., Tokura, Y., Furukawa, F. and
Takigawa, M. (1998). Sphingosylphosphorylcholine Stimulates Proliferation and
Upregulates Cell Surface-Associated Plasminogen Activator Activity in Cultured
Human Keratinocytes. Journal of Investigative Dermatology. 110: 253-258.
76. Walker, K.M., Urban, L., Medhurst, S.J., Patel, S., Panesar, M., Fox, A.J.,
McIntyre, P. (2003). The VR1antagonist capsaizepine reverses mechanical
84
hyperalgesia in models of inflammatory and neuropathic pain. Journal of
Pharmacology and Experimental Therapeutics. 304: 56-62.
77. Wallace, V.C., Cottrell, D.F., Brophy, P.J., Fleetwood-Walker, S.M. (2003)
Focal Lysolecithin-Induced Demyelination of Peripheral Afferents Results in
Neuropathic Pain Behavior That Is Attenuated by Cannabinoids. The Journal of
Neuroscience. 23: 3221-3233.
78. Welch, S.P., Sim-Selley, L.J., Selley, D.E. (2012). Sphingosine-1-phosphate
receptors as emerging targets for treatment of pain. Biochem Pharmacol. 84:
1551-1562.
79. Wu, J., Spiegel, S. and Sturgill, T.W. (1995). Sphingosine 1-phosphate rapidly
activates the mitogen-activated protein kinase pathway by a G protein-dependent
mechanism. J. Biol. Chem. 270: 11484-11488.1.
80. Xie, W., Strong, J.A., Kays, J., Nicol, G.D., Zhang, J.M. (2012). Knockdown of
the sphingosine-1-phosphate receptor S1PR1 reduces pain behaviors induced by local
inflammation of the rat sensory ganglion. Neurosci Lett. 515: 61-65.
81. Xu, Y., Zhu, K., Hong, G., Wu, W., Baudhuin, L.M., Xiao, Y., Damron, D.S.
(2000). Sphingosylphosphorylcholine is a ligand for ovarian cancer
G-protein-coupled receptor. Nat. Cell. Biol. 2: 261-267.
82. Zhu, K., Baudhuin, L.M., Hong, G., Williams, F.S., Cristina, K.L. (2001). Sphingosylphosphorylcholine and lysophosphatidylcholine are ligands for the G
protein-coupled receptor GPR4. J. Biol. Chem. 276: 41325-41335.