跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖元邦
Benjamin Yuan-Bang Liau
論文名稱: 蛋白磷酸激酶A 與蛋白磷酸激酶C epsilon 參與在 酸以及溶血磷脂質引起的疼痛敏感現象
Protein Kinase A and Protein Kinase C epsilon Are Involved in Acid- and Lysophospholipids-induced Hyperalgesia
指導教授: 孫維欣
Wei-Hsin Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 103
中文關鍵詞: 痛覺蛋白磷酸激酶疼痛敏感
外文關鍵詞: pain, protein kinase, hyperalgesia
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    痛覺是ㄧ種當身體受到環境中的有害刺激時,所產生的一種不舒服的重要感
    覺,也是警告我們身體遭受到傷害,必須規避或治療的一種保護機制。
    前人研究發現在海藻醣引發的預發炎模式中,蛋白激酶A 與Cε 可能扮演在
    急性疼痛轉為慢性疼痛的關鍵角色。此外,組織酸化被認為是造成疼痛的主要原
    因之一,但目前還不清楚的是因組織酸化而引起疼痛是透過怎麼樣的下游機制。
    此外細胞內的溶血磷脂質是否能引發痛覺,會參與在哪類痛覺的機制中,也仍然
    尚未被釐清。
    我探究的方式是在小鼠的後肢腳掌皮下注射酸性緩衝溶液與三種溶血磷脂
    質,並且分別在各組實驗裡另注射不同訊號傳遞路徑的抑制劑。注射後在不同的
    時間點分別用馮法瑞尼龍測量絲以及哈格里夫斯熱感測試儀來做測試,觀察機械
    性疼痛和熱感刺激疼痛是否被下游路徑的抑制劑所抑制,以及抑制的程度與時間
    區段。實驗發現注射酸以及三類溶血磷脂質都造成機械性與熱感痛覺敏感性增強
    的現象並持續超過一天。另外發現蛋白激酶A 的抑制劑、AC 之阻斷劑會在疼痛
    敏感性上升的初期有抑制作用;蛋白激酶Cε 的抑制劑、Gi 之抑制劑、PLC 之阻
    斷劑則會在疼痛敏感性上升的中期以後才有抑制作用。有關痛覺的離子通道方面
    的ASICs 之阻斷劑、TRP 之阻斷劑,也能抑制機械性和熱感痛覺敏感性升高的
    現象。期許在更多的痛覺機制被釐清之後,能被應用在研發緩和痛覺,副作用更
    少的藥物上。


    Abstract
    Pain is a complex experience that involves the transduction of noxious
    environmental stimuli. The ability to detect noxious stimuli is essential to an
    organism's survival and wellbeing.
    Some studies have demonstrate that in carrageenan-induced priming state protein
    kinase A and Cε play critical roles in the transition from acute pain to chronic pain. A
    decrease in tissue pH has been observed following inflammation, hematomas, and
    isometric exercise. A positive correlation exists between pain and local acidity.
    However, the downstream mechanism of proton-induced pain remains unclear.
    Furthermore, the regulatory pathway between lysophospholipids and pain has not
    been investigated completely.
    To answer these questions, I used mechanical and thermal tests in different time
    period to examine the hyperalgesia induced by acidic solution, psychosine,
    lysphosphatidylcholine and sphingosylphosphatidylcholine. In addition, protein
    kinase A inhibitor and adenylyl cyclase blocker inhibit hyperalgesia in the early stage,
    but protein kinase Cε inhibitor, Gi inhibitor and phospholipase C blocker inhibit
    hyperalgesia in the middle and late stage. Transient receptor potential family blocker
    and acid-sensing ion channel blocker also inhibit acid-induced mechanical and
    thermal hyperalgesia. I wish these studies can be used in pain curation in the future.

    目錄 第一章 緒論 ………………………………………………………………………. 1 1.1 痛覺 ………………………………………………………………………….. 2 1.2 痛覺的訊息傳導途徑 ……………………………………………………….. 3 1.3發炎物質引起痛覺過敏現象 ………………………………………………... 5 1.4 疼痛與組織酸化 …………………………………………………………….. 6 1.5 與氫離子相關的離子通道 ………………………………………………….. 7 1.5.1辣椒素受體 ……………………………………………………………… 8 1.5.2 酸敏感離子通道家族 …………………………………………………... 8 1.6 與痛覺訊號傳遞相關的溶血磷脂質 ……………………………………….. 9 1.6.1 脫脂磷酸脂膽鹼 ………………………………………………………. 10 1.6.2 神經磷醯膽鹼 …………………………………………………………. 11 1.6.3 硝氨醇半乳糖 …………………………………………………………. 12 1.7 疼痛傳遞可能經由的GPCR路徑 ………………………………………… 13 1.7.1 G 蛋白偶合受體 ………………………………………………………. 13 1.7.2 G蛋白偶合受體下游反應路徑 …………………………………………14 1.7.3 蛋白磷酸化酶 A ………………………………………………………. 15 1.7.4 蛋白磷酸化酶 C ………………………………………………………. 15 1.7.5 蛋白磷酸化酶 A 和蛋白磷酸化酶 Cε 參與的疼痛反應 ………… 16 1.8 研究動機與目的 …………………………………………………………… 17 第二章 材料與方法 ………………………………………………………………19 2.1 實驗材料 …………………………………………………………………… 20 2.1.1 實驗動物 ……………………………………………………………… 20 2.1.2 實驗藥品 ……………………………………………………………… 20 2.2 實驗方法 …………………………………………………………………… 23 2.2.1 動物疼痛行為實驗 …………………………………………………… 23 2.2.1.1 小鼠腳掌皮下注射 ……………………………………………… 23 2.2.1.2 機械性疼痛行為實驗 …………………………………………… 23 2.2.1.3 熱疼痛行為實驗 ………………………………………………… 25 2.3 統計分析 …………………………………………………………………… 26 第三章 結果 …………………………………………………………………….. 28 3.1 脫脂磷酸脂膽鹼、神經磷醯膽鹼與硝氨醇半乳糖的注射,會提高對於機械性疼動的痛覺敏感性 …………………………………………………………….. 29 3.2 脫脂磷酸脂膽鹼、神經磷醯膽鹼與硝氨醇半乳糖的注射,會提高對於熱感疼動的痛覺敏感性 ……………………………………………………………….. 31 3.3 PKA的抑制劑能在LPC注射後的0-90分鐘內抑制LPC造成的機械性與熱感疼痛閾值降低的現象;PKCε的抑制劑的抑制作用時間則是在LPC注射後的120-240分鐘間 …………………………………………………………………… 33 3.4 Gi的抑制劑能夠降低在注射LPC、SPC、psychosine的60-240分鐘間,所造成的機械性疼痛與熱感疼痛閾值的降低現象 …………………………………35 3.5 注射pH低的溶液會增加機械性疼痛和熱感疼痛的敏感性。隨著pH值的降低與昇高,疼痛敏感性也會隨之增強與減弱 …………………………………37 3.6 PKA的抑制劑可以在注射酸後的180分鐘內,抑制注射酸造成的機械性疼痛敏感閾值降低的現象 ……………………………………………………………39 3.7 PKCε的抑制劑可以在注射酸後的180-480分鐘內,抑制注射酸造成的機械性疼痛敏感閾值降低的現象 ………………………………………………………41 3.8 PKA的抑制劑可以在注射酸後的120分鐘內,抑制注射酸造成的熱感疼痛敏感閾值降低的現象;PKCε的抑制劑則可以在注射酸後的240-480分鐘內,抑制注射酸造成的熱感疼痛敏感閾值降低的現象 …………………………………43 3.9 PLC的阻斷劑可以在注射酸後的60-240分鐘內,抑制酸造成的機械性疼痛敏感閾值降低的現象;Gi的抑制劑對酸造成的機械性疼痛敏感與熱感疼痛敏感閾值降低的抑制時間為注射後的60-240分鐘內;AC的阻斷劑對酸造成的機械性疼痛敏感閾值降低的抑制時間則為注射酸後的60-120分鐘內 …………………45 3.10 ASICs的阻斷劑會在注射酸後的240分鐘內抑制酸造成的機械型疼痛敏感閾值降低的現象;TRP的阻斷劑對酸造成的機械性疼痛敏感與熱感疼痛敏感閾值降低的抑制時間則是在注射酸後的90-180分鐘之間 ……………………………47 第四章 討論 ………………………………………………………………………50 4.1 注射 LPC、SPC 與 psychosine 造成之機械性與熱感痛覺敏感現象 … 51 4.2 PKA 和 PKC 的抑制劑對 LPC 造成之疼痛敏感的抑制 ……………… 53 4.3 Gi 的抑制劑對 LPC、SPC 和 psychosine 造成之疼痛敏感的抑制 …… 54 4.4 酸造成之機械性與熱感痛覺敏感現象 …………………………………… 55 4.5 PKA 和 PKC 的抑制劑對酸造成之疼痛敏感的抑制 ……………………57 4.6 PLC、Gi 和 AC 的抑制劑對酸造成之疼痛敏感的抑制 ………………… 59 4.7 ASICs 和 TRP 的阻斷劑對酸造成之疼痛敏感的抑制 ………………… 60 第五章 參考文獻 …………………………………………………………………62

    1. Aley, K.O. and Levine, J.D. (1999). Role of protein kinace A in the maintenance
    73
    of inflammatory pain. The Journal of Neuroscience. 19: 2181-2186.
    2. Aley, K.O., Messing. R.O., Mochly-Rosen, D., Levine, J.D. (2000). Chronic
    hypersensitivity for inflammatory nociceptor sensitization mediated by the epsilon
    isozyme of protein kinase C. The Journal of Neuroscience. 20 : 4680-4685.
    3. Amadesi, S., Cottrell, G.S., Divino, L., Chapman, K., Grady, E.F., Bautista, F.,
    Karanjia, R., Barajas-Lopez, C., Vanner, S., Vergnolle, N., Bunnett, N.W. (2006).
    Protease-activated receptor 2 sensitizes TRPV1 by protein kinase Cepsilon- and
    A-dependent mechanisms in rats and mice. J. Physiol. 575: 555-571.
    4. An, S., Goetzl, E.J., Lee, H. (1998). Signaling mechanisms and molecular
    characteristics of G protein-coupled receptors for lysophosphatidic acid and
    sphingosine 1-phosphate. J. Cell Biochem Suppl. 30-31: 147-157.
    5. Anliker, B., Chun, J. (2004). Cell surface receptors in lysophospholipid signaling.
    Semin Cell Devl Biol. 15: 457-465.
    6. Anliker, B., Chun, J. (2004). Lysophospholipid G Protein-coupled Receptors. J.
    Biol. Chem. 279: 20555-20558.
    7. Basbaum, A.I., Bautista, D.M., Scherrer, G., Julius, D. (2009) Cellular and
    molecular mechanisms of pain. Cell. 139: 267-284.
    8. Bevan, S. and Yeast, J. (1992). Protons activate a cation conductance in a
    sub-population of rat dorsal root ganglion neurons. J. Physiol. 433: 145-161.
    74
    9. Bhave, G., Gereau, R.W. 4th. (2004) Posttranslational mechanisms of peripheral
    sensation. The Journal of Neurobiology. 61: 88-106.
    10. Bitar, K.N. and Yamata, H. (1995). Modulation of smooth muscle contraction
    by sphingosylphosphorylcholine. American Journal of Phisiology. 269: 370-377.
    11. Bockaert, J., Perroy, J., Becamel, C., Marin, P., Fagni, L. (2010). GPCR
    interacting proteins (GIPs) in the nervous system: Roles in physiology and
    pathologies. Annu Rev Pharmacol Toxicol. 50: 89-109.
    12. Boguslawski, G., Lyons, D., Harvey, K.A., Kovala, A.T. and English, D. (2000).
    Sphingosylphosphorylcholine Induces Endothelial Cell Migration and Morphogenesis.
    Biochemical and Biophysical Research Communications. 272: 603-609.
    13. Booden, M.A., Siderovski, D.P., Der, C.J. (2002). Leukemia-associated Rho
    guanine nucleotide exchange factor promotes G alpha q-coupled activation of RhoA.
    Mol Cell Biol. 22: 4053-4061.
    14. Casey, B.J., Jones, R.M. (2010). Neurobiology of the adolescent brain and
    behavior: implications for substance use disorders. J Am Acad Child Adolesc
    Psychiatry. 49: 1189-1220.
    15. Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D.,
    Julius, D. (1997) The capsaicin receptor: a heat-activated ion channel in the pain
    pathway. Nature. 389: 816-824.
    75
    16. Cesare, P., Dekker, L.V., Sardini, A., Parker, P.J., McNaughton, P.A. (1999).
    Specific involvement of PKC-epsilon in sensitization of the neuronal response to
    painful heat. Neuron. 23: 617-624.
    17. Chisolm, G.M. and Steinberg, D. (2000). The oxidative modification hypothesis
    of atherogenesis: an overview. Free Radical Biology and Medicine. 28: 1815-1826.
    18. Clair, T., Aoki, J., Koh, E., Bandle, R.W., Nam, S.W., Ptaszynska, M.M., Mills,
    G.B., Schiffmann, E., Liotta, L.A., Stracke, M.L. (2003). Autotaxin Hydrolyzes
    Sphingosylphosphorylcholine to Produce the Regulator of Migration,
    Sphingosine-1-Phosphate. Cancer Res. 63: 5446-5453.
    19. Colles, S.M. and Chisolm, G.M. (2000). Lysophosphatidylcholine-induced
    cellular injury in cultured fibroblasts involves oxidative events. J. Lipid Res. 41:
    1188–1198.
    20. Corey, D.P. and Garcia-Anoveros, J. (1996). Mechanosensation and the
    DEG/ENaC ion channels. Science. 273: 361-364.
    21. Davis, J.B., Gray, J., Gunthorpe, M.J., Hatcher, J.P., Davey, P.T., Overend, P.,
    Harries, M.H., Latcham, J., Clappham, C., Atkinson, K., Hughes, S.A., Rance, K.,
    Grau, E., Harper, A.J., Pugh, P.L., Rogers, D.C., Bingham, S., Randall, A.,
    Sheardown, S.A. (2000). Vanilloid receptor-1 is essential for inflammatory thermal
    hyperalgesia. Nature. 405: 183-187.
    76
    22. Desai, N.N., Carlson, R.O., Mattie, M.E., Olivera, A., Buckley, N.E., Seki, T.,
    Brooker, G., Spiegel, S. (1993). Signaling Pathways for
    Sphingosylphosphorylcholine-mediated Mitogenesis in Swiss 3T3 Fibroblasts. The
    Journal of Cell Biology. 121: 1385-1395.
    23. Ding, W.G., Toyoda, F., Ueyama, H., Matsuura, H. (2011).
    Lysophosphatidylcholine enhances I(Ks) currents in cardiac myocytes through
    activation of G protein, PKC and Rho signaling pathways. Journal of Molecular and
    Cellular Cardiology. 50: 58-65.
    24. Dray, A., Urban, L., Dickenson, A. (1994) Pharmacology of chronic pain.
    Trends Pharmacol Sci. 12: 190-197.
    25. Dray, A. (1995). Imflammatory mediators of pain. British Journal of
    Anaesthesia. 75: 125-131.
    26. Eglen, R.M., Bosse, R., Reisine, T. (2007). Emerging concepts of guanine
    nucleotide-binding protein-coupled receptor (GPCR) function and implications for
    high throughput screening. Assay Drug Dev Technol. 5: 425-451.
    27. Hall, S.M., Gregson, N.A. (1971). The in Vivo and Ultrastructural Effects of
    Injection of Lysophosphatidyl Choline into Myelinated Peripheral Nerve Fibres of the
    Adult Mouse. J. Cell Sci. 9: 769-789.
    28. Ichioka, T., Kishimoto, Y. and Yeager, A.M. (1987). Simultaneous
    77
    determination of psychosine and cerebrosides. Analytical Biochemistry. 166: 178-182.
    29. Im, D., Heise, C.E., Nguyen, T., O'Dowd, B.F. and Lynch, K.R. (2001).
    Identification of a molecular target of psychosine and its role in globoid cell
    formation. J. Cell Biology. 153: 429-434.
    30. Im, D. (2005). Two ligands for a GPCR, proton vs lysolipid. Acta
    Pharmacologica Sinica. 26: 1435-1441.
    31. Inoue, M., Rashid, M.H., Fujita, R., Contos, J.J., Chun, J., Ueda, H. (2004).
    Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat
    Med. 10: 712-718.
    32. Inoue, M., Ma, L., Aoki, J., Chun, J. and Ueda, H. (2008). Autotaxin, a synthetic
    enzyme of lysophosphatidic acid (LPA), mediates the induction of nerve-injured
    neuropathic pain. Molecular Pain. 4: 1-6.
    33. Inoue, M., Ma, L., Aoki, J., Chun, J., Ueda, H. (2008). Autotaxin, a synthetic
    enzyme of lysophosphatidic acid (LPA), mediates the induction of nerve-injured
    neuropathic pain. Mol Pain. doi: 10.1186/1744-8069-4-6.
    34. Inoue, M., Xie, W., Matsushida, Y., Chun, J., Aoki, J., Ueda, H. (2008).
    Lysophosphatidylcholine induces neuropathic pain through an action of autotaxin to
    generate lysophosphatidic acid. Neuroscience. 152: 296-298.
    35. Inoue, M., Ma, L., Aoki, J., Ueda, H. (2008). Simultaneous stimulation of spinal
    78
    NK1 and NMDA receptors produces LPC which undergoes ATX-mediated
    conversion to LPA, an initiator of neuropathic pain. J. Neurochem. 107: 1556-1565.
    36. Ishii, I., Fukushima, N., Ye, X.Q., Chun, J. (2004). Lysophospholipid receptors -
    signaling and biology. Annu. Rev. Biochem. 73: 321-354.
    37. Jones, N.G., Slater, R., Cadiou, H., McNaughton, P. and McMahon, S.B. (2004).
    Acid-induced pain and its modulation in humans. J. Neurosci. 24: 10974-10979.
    38. Julius, D. and Basbaum, A.I. (2001). Molecular mechanisms of nociception.
    Nature. 413: 203-210.
    39. Kabarowski, J.H., Zhu, K., Le, L.Q., Witte, O.N., Xu, Y. (2001).
    Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A. Science.
    293: 702-705.
    40. Khasar, S.G., Gold, M.S., Levine, J.D. (1998). A tetratoxin-resistant sodium
    current mediates inflammatory pain in the rat. Neurosci Lett. 256: 17-20.
    41. Kidd, B.L., Urban, L.A. (2001). Mechanisms of inflammatory pain. Br J
    Anaesth. 87: 3-11.
    42. Kress, M., Reeh, P.W., Vyklicky, L. (1997). An interaction of inflammatory
    mediators and protons in small diameter dorsal root ganglion neurons of the rat.
    Neurosci. Lett. 224: 37-40.
    43. Mair, N., Benetti, C., Andratsch, M., Leitner, M.G., Constantin, C.E.,
    79
    Camprubi-Robles, M., Quarta, S., Biasio, W., Kuner, R., Gibbins, I.L., Kress, M.,
    Haberberger, R.V. (2011). Genetic Evidence for Involvement of Neuronally
    Expressed S1P1 Receptor in Nociceptor Sensitization and Inflammatory Pain. PLoS
    One. 6: 1-12.
    44. Meyer zu Heringdorf, D., Himmel, H.M., Jakobs, K.H. (2002).
    Sphingosylphosphorylcholine - biological functions and mechanisms of action.
    Biochimica et Biophysica Acta. 1582: 178-189.
    45. Millan, M.J. (1999). The induction of pain: an integrative review. Neurobiology.
    192: 444-462.
    46. Millan, M.J. (2002). Descending control of pain. Progress in Neurobiology. 66:
    355-474.
    47. Moolenaar, W.H. (1995). Lysophosphatidic Acid, a Multifunctional
    Phospholipid Messenger. J. Biol. Chem. 270: 12949-12952.
    48. Moriyana, T., Higashi, T., Togashi, K., Iida, T., Segi, E., Sugimoto, Y.,
    Tominaga, T., Narumiya, S., Tominaga, M. (2005) Sensitization of TRPV1 by EP1
    and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol. Pain. 1: 3.
    49. Murugesan, G. and Fox, P.L. (1996). Role of lysophosphatidylcholine in the
    inhibition of endothelial cell motility by oxidized low density lipoprotein. J Clin
    Invest. 97: 2736-2744.
    80
    50. Nishizuka, Y. (1992). Intracellular Signaling by Hydrolysis of Phospholipids
    and Activation of Protein Kinase C. Science. 258: 6076-14.
    51. Nixon, G.F., Mathieson, F.A., Hunter, I. (2008). The multi-functional role of
    sphingosylphosphorylcholine. Prog Lipid Res. 47: 62-75.
    52. Olah, Z., Karai, L., Iadarol,a M.J. (2002). Protein kinase C(alpha) is required for
    vanilloid receptor 1 activation. Evidence for multiple signaling pathways. J Biol
    Chem. 277: 35752-35759.
    53. Pages, C., Simon, M.F., Valet, P., Saulnier-Blache, J.S. (2001).
    Lysophosphatidic acid synthesis and release. Prostaglandins Other Lipid Mediat. 64:
    1-10.
    54. Pan, H.L., Zhang, Y.Q., Zhao, Z.Q. (2010). Involvement of lysophosphatidic
    acid in bone cancer pain by potentiation of TRPV1 via PKC(epsilon) pathway in
    dorsal root ganglion neurons. Pan et al. Molecular Pain. 6: 85-95.
    55. Parada, C.A., Yeh, J.J., Reichling, D.B., Levine, J.D. (2003). Transient
    attenuation of protein kinase Cepsilon can terminate a chronic hyperalgesic state in
    the rat. Neuroscience. 120: 219-226.
    56. Price, M.P., McIlwrath, S.L., Xie, J.H., Cheng, C., Qiao, J., Tarr, D.E., Sluka,
    K.A., Brennan, T.J., Lewin, G.R., Welsh, M.J. (2001). The DRASIC Cation Channel
    Contributes to the Detection of Cutaneous Touch and Acid Stimuli in Mice. Neuron.
    81
    32: 1071-1083.
    57. Probst, W.C., Snyder, L.A., Schuster, D.I., Brosius, J., Sealfon, S.C. (1992).
    Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol. 11:
    1-20.
    58. Pyne, S., Pyne, N. (2000). Sphingosine 1-phosphate signalling via the
    endothelial differentiation gene family of G-protein-coupled receptors. Pharmacol
    Ther. 88: 115-131.
    59. Reichling, D.B., Levine, J.D. (2009). Critical role of nociceptor plasticity in
    chronic pain. Trends Neurosci. 32: 611-618.
    60. Sachs, D., Villarreal, C.F., Cunha, F.Q., Parada, C.A., Ferreira, S.H. (2009). The
    role of PKA and PKC epsilon pathways in prostaglandin E2-mediated
    hypernociception. British Journal of Pharmacology. 156: 826-834.
    61. Sautel, M., Milligan, G. (2000). Molecular manipulation of G-protein-coupled
    receptors: a new avenue into drug discovery. Curr Med Chem. 7: 889-896.
    62. Scholz, J. and Woolf, C.J. (2002). Can we conquer pain? Nature Neuroscience.
    5: 1062-1067.
    63. Sluka, K.A., Kalra, A., Moore, S.A. (2001). Unilateral intramuscular injections
    of acidic saline produce a bilateral, long-lasting hyperalgesia. Muscle Nerve. 24:
    37-46.
    82
    64. Staniland, A.A., McMahon, S.B. (2009). Mice lacking acid-sensing ion channels
    (ASIC) 1 or 2, but not ASIC3, show increased pain behaviour in the formalin test. Eur
    J Pain. 13: 554-563.
    65. Steen, K.H., Reeh, P.W., Anton, F. and Handwereker, H.O. (1992). Protons
    selectively induce lasting excitation and sensitization to mechanical stimulation of
    nociceptor in rat skin, in vitro. J. Neuroscience. 12: 86-93.
    66. Steen, K.H., Steen, A.E. and Reeh, P.W. (1995). A Dominant Role of Acid pH
    in Inflammatory Excitation and Sensitization of Nociceptors in Rat Skin, in vitro. J.
    Neuroscience. 15: 3982-3985.
    67. Steen, K.H. and Reeh, P.W. (1996). Tissue acidosis in nociception and pain.
    Brain Research. 113: 143-151.
    68. Steen, K.H., Steen, A.E., Kreysel, H.W., Reeh, P.W. (1996). Inflammatory
    mediators potentiate pain induced by experimental tissue acidosis. Pain. 66: 163-170.
    69. Strader, C.D., Fong, T.M., Graziano, M.P., Tota, M.R. (1995). The family of
    G-protein-coupled receptors. FASEB J. 9: 745-754.
    70. Sun, R.Q., Tu, Y.J., Lawand, N.B., Yan, J.Y., Lin, Q., Willis, W.D. (2004)
    Calcitonin Gene-Related Peptide Receptor Activation Produces PKA- and
    PKC-Dependent Mechanical Hyperalgesia and Central Sensitization. J Neurophysiol.
    92: 2859-2866.
    83
    71. Taiwo, Y.O. and Levine, J.D. (1992). Serotonin is a directly-acting hyperalgesic
    agent in the rat. Neuroscience. 48: 485-490.
    72. van Meeteren, L.A., Ruurs, P., Christodoulou, E., Goding, J.W., Takakusa, H.,
    Kikuchi, K., Perrakis, A., Nagano, T., Moolenaar, W.H. (2005). Inhibition of
    autotaxin by lysophosphatidic acid and sphingosine 1-phosphate. J. Biol Chem. 280:
    21155-21161.
    73. Villarreal, C., Sachs, D., Cunha, F., Parada, C., Ferreira, S.H. (2009) The role of
    PKA and PKCepsilon pathways in prostaglandin E2-mediated hypernociception. Br. J.
    Pharmacol. 156: 826-834.
    74. Voilley, N., Weille, J.D., Mamet, J., Lazdunski, M. (2001). Nonsteroid
    anti-inflammatory drugs inhibit both the activity and the inflammation-induced
    expression of acid-sensing ion channels in nociceptors. The Journal of Neuroscience.
    21: 8026-8033.
    75. Wakita, H., Matsushita, K., Nishimura, K., Tokura, Y., Furukawa, F. and
    Takigawa, M. (1998). Sphingosylphosphorylcholine Stimulates Proliferation and
    Upregulates Cell Surface-Associated Plasminogen Activator Activity in Cultured
    Human Keratinocytes. Journal of Investigative Dermatology. 110: 253-258.
    76. Walker, K.M., Urban, L., Medhurst, S.J., Patel, S., Panesar, M., Fox, A.J.,
    McIntyre, P. (2003). The VR1antagonist capsaizepine reverses mechanical
    84
    hyperalgesia in models of inflammatory and neuropathic pain. Journal of
    Pharmacology and Experimental Therapeutics. 304: 56-62.
    77. Wallace, V.C., Cottrell, D.F., Brophy, P.J., Fleetwood-Walker, S.M. (2003)
    Focal Lysolecithin-Induced Demyelination of Peripheral Afferents Results in
    Neuropathic Pain Behavior That Is Attenuated by Cannabinoids. The Journal of
    Neuroscience. 23: 3221-3233.
    78. Welch, S.P., Sim-Selley, L.J., Selley, D.E. (2012). Sphingosine-1-phosphate
    receptors as emerging targets for treatment of pain. Biochem Pharmacol. 84:
    1551-1562.
    79. Wu, J., Spiegel, S. and Sturgill, T.W. (1995). Sphingosine 1-phosphate rapidly
    activates the mitogen-activated protein kinase pathway by a G protein-dependent
    mechanism. J. Biol. Chem. 270: 11484-11488.1.
    80. Xie, W., Strong, J.A., Kays, J., Nicol, G.D., Zhang, J.M. (2012). Knockdown of
    the sphingosine-1-phosphate receptor S1PR1 reduces pain behaviors induced by local
    inflammation of the rat sensory ganglion. Neurosci Lett. 515: 61-65.
    81. Xu, Y., Zhu, K., Hong, G., Wu, W., Baudhuin, L.M., Xiao, Y., Damron, D.S.
    (2000). Sphingosylphosphorylcholine is a ligand for ovarian cancer
    G-protein-coupled receptor. Nat. Cell. Biol. 2: 261-267.
    82. Zhu, K., Baudhuin, L.M., Hong, G., Williams, F.S., Cristina, K.L. (2001). Sphingosylphosphorylcholine and lysophosphatidylcholine are ligands for the G
    protein-coupled receptor GPR4. J. Biol. Chem. 276: 41325-41335.

    QR CODE
    :::