| 研究生: |
裴孟海 Bui Manh Hai |
|---|---|
| 論文名稱: |
越南中部雨季時季內振盪演變對降雨變異的影響之研究 The evolution of intraseasonal oscillations and their influence on rainfall variability during the rainy subseasons in central Vietnam |
| 指導教授: |
嚴明鉦
Ming-Cheng Yen |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
地球科學學院 - 大氣科學學系 Department of Atmospheric Sciences |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 第二階段強降雨特徵 、準雙周震盪 、準9天震盪 、降雨變異 、聖嬰事件 、熱帶低壓擾動 、氣壓驟升 、東南亞夏季季風 |
| 外文關鍵詞: | Second rainy season, Quasi-biweekly variation, Quasi-9day variation, Rainfall variability, ENSO, Tropical depression disturbance, Pressure surge, Southeast Asian Summer monsoon |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在東南亞地區,季內震盪(Intraseasonal Oscillations,簡稱ISOs)是此區域季風變異度中的一個重要分量,不論在調節雨季/夏季季風的肇始、夏季季風的活躍-中斷生命週期以及強降雨事件中,都扮演著顯著的要角。然而在不同的背景流場影響下,ISOs在夏季次季節中也呈現出不同的特徵。落座於東南亞最東邊的越南中部地區,可劃分成兩個不同的氣候子區域:中部高地(Central Highlands,簡稱CH)以及越南中部海岸地區(Central Coast of Vietnam,簡稱CCV)。CH為越南貢獻了高達90%的咖啡產量以及25%的水力發電潛能。相形之下,CCV的雨季經常發生強降雨與洪水事件,也為此地區造成巨大的生命財產損失。所以,了解越南中部地區雨季期間降雨的ISOs,對於天氣及次季節氣候預報能力之提升至關重要,除有助於提高咖啡與水力發電的產能外,也能協助降低大雨與水患所造成的災害。因此,本論文的主要目標是透過使用高解析網格降雨和再分析資料,探討越南中部地區降雨次季節中ISOs的演變以及其對降雨變化的影響。
首先,在CH地區7月下旬觀測到雨季中的第二階段強降雨特徵(Second Rainy Season,簡稱SRS),有別於在4月下旬至5月上旬肇始的傳統雨季。因此,在第一部分將探討1983-2010年期間SRS肇始日(SRS Onset Date,簡稱SRSOD)的長期氣候狀態與年際變化情形,以及IOSs在其中所扮演的角色。經統計發現28年的平均SRSOD落在7月28日,標準差為17天,且CH地區的SRSOD與每年10-20天模和20-60天模的發展相位是同步的。令人驚訝的是,SRSOD顯著的年際變化具有3種不同型態:提前(延後)肇始的SRS有著多(少)1個月的雨期並於7月上旬(直到8月中旬)發生,以及正常的SRS雨期發生在7月下旬。幾乎所有提前肇始的SRS年都發生在聖嬰事件(El Niño)的發展期,特別是在Niño 3.4海表溫度(Sea Surface Temperature,簡稱SST)從1月到12月持續增加的期間。水氣收支分析顯示,水氣通量輻合輻散的年際變化係反應了7月較暖的赤道太平洋SST距平所造成,促使CH地區降雨加劇導致SRS肇始提早。
其次,在亞洲季風中擁有最長雨季的東南亞夏季季風(Southeast Asian Summer Monsoon簡稱SEAM),可以透過SEAM指數以及中南半島降雨指數分成初夏(5/13~7/31)及夏末(8/1~10/17)。初夏時期,西南風盛行並影響整個東南亞地區;到了夏末,此區轉為受到季風槽所控制,導致越南CH地區的雨季呈現兩個截然不同的強降雨階段。因此,CH中降雨的準雙周震盪(Quasi-Biweekly Variation,簡稱QBV)在兩個次季節中顯現出不同的特徵。與初夏相比,特別在1997-2010年期間,QBV於夏末時期增強,且在CH地區降雨年際變化的調制上扮演了重要的角色。赤道西太平洋水氣通量的輻合(輻散)距平,在強且濕(弱且乾)的夏末增加(減弱)了QBV的強度,從而造成CH地區降雨的增加(減少)。
最後,東南亞的秋季(9-11月份)透過不同的環流背景場可被分成初秋(9/1-10/17)以及晚秋(10/18-11/30)。季風槽是控制東南亞初秋的關鍵因素;相反地,東北風伴隨著西伯利亞高壓增強所帶來的氣壓驟升(Pressure Surge),則在晚秋扮演著重要的角色。對CCV的秋季降雨而言,QBV(12-24天週期)是最顯著的ISO,其次則是準9天震盪(Quasi-9-day Variation,簡稱Q9V,7-11天週期)。因此,藉由對1983-2010年期間通帶濾波處理後的降雨及再分析資料進行8相位合成分析,以探討初秋和晚秋時熱帶-溫帶之間的交互作用所伴隨的CCV地區降雨之QBV以及Q9V。初秋時期降雨的QBV主要是由赤道西太平洋生成的西北向移動之熱帶低壓擾動(Tropical Depression Disturbances,簡稱TDDs)所引發,隨後受來自俄羅斯東北的氣壓驟升而增強。相反地,晚秋時期降雨的QBV是受到西伯利亞高壓的氣壓驟升、赤道西太平洋東風,以及地形的效應共同影響。至於Q9V在初秋時期的濕相位首先受到來自東海移動至CCV地區的氣旋式TDD,以及自菲律賓海西傳至中國南方的反氣旋式TDD相互作用所造成的,接著被來自日本海向西南延伸的高壓距平所增強。然而,在晚秋時期降雨的Q9V受制於來自赤道西太平洋向西傳遞的TDDs、西伯利亞高壓之氣壓驟升以及地形之間的相互作用所影響。
The intraseasonal oscillations (ISOs) are an important component of the monsoon variability, which play a significant role in modulating the rainy season/summer monsoon onset date, active/break cycles of summer monsoon, and heavy rainfall event in the Southeast Asia. The ISOs exhibit different characteristics between summer subseasons due to the influence of the distinct background flows. Located in the easternmost Southeast Asia, central Vietnam could be divided into two climatic subregions including the Central Highlands (CH) and central coast of Vietnam (CCV). The CH contributes up to 90% of the country’s total coffee production and 25% of its total hydropower potential. By contrast, heavy rainfall and flood event often appear during the rainy season in the CCV, resulting in great damage on human lives and properties. Thus, understanding about the ISOs of rainfall in central Vietnam during rainy subseasons is essential to improve the capability of prediction for weather and subseasonal climate, which may enhance coffee yields and hydropower production as well as reduce the damage caused by heavy rainfall and flood events. Hence, the main goal of this dissertation is to investigate the evolution of ISOs and their influence on rainfall variability during the rainy subseasons in central Vietnam by analysing high-resolution gridded rainfall and reanalysis data.
Firstly, a second rainy season (SRS) is observed in late July in the CH, which is distinct from the conventional rainy season that occurs in late April – early May. Therefore, the first part examines the climatology of and internnual variation in the SRS onset date (SRSOD) during 1983-2010 period as well as the role of the ISOs in the SRSOD. The average SRSOD for 28 years is July 28, with a standard deviation of 17 days. The SRSOD over the CH is synchronized with the developing phases of the 10-20-day and 20-60-day modes for each year. Surprisingly, the pronounced interannual variation in the SRS onset date has led to three apparent regimes: an early (late) SRS with a 1 month longer (shorter) rainfall period occurring in early July (until mid-August) and a normal SRS starting in late July. Almost all the early SRS years occur during El Niño developing phases, particularly during the Niño3.4 sea surface temperature (SST) increase from January through December. Water vapor budget analyses reveal that the interannual variation in the divergent water vapor flux is in response to the warmer July tropical Pacific SST anomalies, resulting in rainfall enhancement over the CH and eventually inducing early SRS onset.
Secondly, Southeast Asian summer monsoon (SEAM), which owns one longest rainy season in the Asian monsoon, can be divided into early (13 May-31 July) and late summer (1 August-17 October) based on SEAM index and the Indochina Peninsula rainfall index. The southwesterly prevails over the entire Southeast Asia in early summer while the monsoon trough controls this region in late summer, leading to two distinct rainy seasons in the Central Highlands (CH) of Vietnam. Consequently, the quasi-biweekly variation (QBV) of rainfall in the CH shows different characteristics between two subseasons. Compared to early summer, the QBV in late summer strengthens and plays more important role in modulating interannual variation of rainfall mean over the CH, especially during 1997-2010. The anomalous convergence (divergence) of water vapor flux over the tropical western Pacific enhances (reduces) the QBV intensity in the strong-and-wet (weak-and-dry) late summers, thus inducing more (less) rainfall over the CH.
Finally, in Southeast Asia, the autumn (Sepember-November) could be divided into early (Sepember-17 October) and late (18 October-November) autumn with the distinct background flow. Monsoon trough is the critical factor that controls Southeast Asia in early autumn. In contrast, the northeasterly wind accompanied with pressure surge, which is attributed to the intensification of the Siberian High, plays the key role in late autumn. The QBV (12-24-day variation) is the most significant ISO of rainfall over the CCV in the autumn, followed by quasi-9day variation (Q9V, 7-11-day). Thus, the tropical-extratropical interaction associated with the QBV and Q9V of rainfall in the CCV is then investigated during both early and late autumn by performing 8-phase composite analysis to bandpass-filtered precipitation and reanalysis data during 1983-2010 period. For the QBV, in early autumn, the QBV of rainfall is primarily induced by the northwestward-moving tropical depression disturbances (TDDs) originated from the equatorial western Pacific, which is then enhanced by pressure surge from northeast Russia. On the contrary in late autumn, the QBV of rainfall is regulated by the collaborative effects of pressure surge from the Siberian High, the easterly wind from the tropical western Pacific, and topography. For the Q9V, in early autumn, the wet phase of Q9V is first caused by the interplay of a cyclonic TDD moving from the East Sea to the CCV and an anticyclonic TDD propagating from the Philippine Sea to southern China, which is then strengthened by the southwestward extension of the high pressure anomaly from the Japan Sea. However, in late autumn, the Q9V of rainfall is governed by the interaction of the westward-migrating of TDDs from the tropical western Pacific, pressure surge from the Siberian High, and topography.
Amarasinghe, U. A., Hoanh, C. T., D'haeze, D., & Hung, T. Q., (2015): Toward sustainable coffee production in Vietnam: More coffee with less water. Agricultural Systems, 136, 96-105 doi:https://doi.org/10.1016/j.agsy.2015.02.008.
Ashouri, H., Hsu, K.-L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., . . . Prat, O. P., (2015): PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bulletin of the American Meteorological Society, 96,1, 69-83 doi:https://doi.org/10.1175/BAMS-D-13-00068.1.
Bingham, C., Godfrey, M., & Tukey, J., (1967): Modern techniques of power spectrum estimation. IEEE Transactions on audio and electroacoustics, 15,2, 56-66 doi:10.1109/TAU.1967.1161895.
Bui‐Manh, H., Peng, C. M., Fu, Y. T., Dinh, D. T., Lin, N. H., & Yen, M. C. (2021). The second rainy stage onset in the Central Highlands of Vietnam. Geophysical Research Letters, 48(10), e2021GL093107. https://doi.org/10.1029/2021GL093107
Chang, C., Chen, J., Harr, P., & Carr, L., (1996): Northwestward-propagating wave patterns over the tropical western North Pacific during summer. Monthly Weather Review, 124,10, 2245-2266. https://doi.org/10.1175/1520-0493(1996)124<2245:NPWPOT>2.0.CO;2
Chatterjee, P., & Goswami, B.,( 2004): Structure, genesis and scale selection of the tropical quasi‐biweekly mode. Quarterly Journal of the Royal Meteorological Society, 130,599, 1171-1194. https://doi.org/10.1256/qj.03.133
Chen, G., & Sui, C. H., (2010): Characteristics and origin of quasi‐biweekly oscillation over the western North Pacific during boreal summer. Journal of Geophysical Research: Atmospheres, 115,D14. https://doi.org/10.1029/2009JD013389
Chen, T.-C., & Chen, J.-M., (1993): The 10–20-day mode of the 1979 Indian monsoon: Its relation with the time variation of monsoon rainfall. Monthly weather review, 121,9, 2465-2482. https://doi.org/10.1175/1520-0493(1993)121<2465:TDMOTI>2.0.CO;2
Chen, T.-C., & Chen, J.-M., (1995): An observational study of the South China Sea monsoon during the 1979 summer: Onset and life cycle. Monthly weather review, 123,8, 2295-2318. https://doi.org/10.1175/1520-0493(1995)123<2295:AOSOTS>2.0.CO;2
Chen, T.-C., & Yoon, J.-h., (2000): Interannual variation in Indochina summer monsoon rainfall: possible mechanism. Journal of Climate, 13,11, 1979-1986 doi:https://doi.org/10.1175/1520-0442(2000)013<1979:IVIISM>2.0.CO;2.
Chen, T.-C., (1985): Global water vapor flux and maintenance during FGGE. Monthly weather review, 113,10, 1801-1819. https://doi.org/10.1175/1520-0493(1985)113<1801:GWVFAM>2.0.CO;2
Chen, T.-C., Tsay, J.-D., Yen, M.-C., & Matsumoto, J., (2012a): Interannual variation of the late fall rainfall in central Vietnam. Journal of Climate, 25,1, 392-413. https://doi.org/10.1175/JCLI-D-11-00068.1
Chen, T.-C., Wang, S.-Y., & Yen, M.-C., (2006): Interannual variation of the tropical cyclone activity over the western North Pacific. Journal of Climate, 19,21, 5709-5720 doi:https://doi.org/10.1175/JCLI3934.1.
Chen, T.-C., Yen, M.-C., Tsay, J.-D., Alpert, J., & Tan Thanh, N. T., (2012b): Forecast advisory for the late fall heavy rainfall/flood event in central Vietnam developed from diagnostic analysis. Weather and Forecasting, 27,5, 1155-1177. https://doi.org/10.1175/WAF-D-11-00104.1
Dao, N., & Bui, L., (2015): Rethinking Development Narratives of Hydropower in Vietnam. Hydropower Development in the Mekong Region: Political, Socio-Economic and Environmental Perspectives, 173-197.
Dee, D. P., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., . . . Bauer, P., (2011): The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the royal meteorological society, 137,656, 553-597. https://doi.org/10.1002/qj.828
Ding, Y., (1990): Build-up, air mass transformation and propagation of Siberian high and its relations to cold surge in East Asia. Meteorology and Atmospheric Physics, 44,1-4, 281-292
Fudeyasu, H., Iizuka, S., & Matsuura, T., (2006): Seasonality of westward‐propagating disturbances over Southeast and south Asia originated from typhoons. Geophysical Research Letters, 33,10 doi:https://doi.org/10.1029/2005GL025380.
Fujinami, H., Hatsuzuka, D., Yasunari, T., Hayashi, T., Terao, T., Murata, F., . . . Islam, M. N., (2011): Characteristic intraseasonal oscillation of rainfall and its effect on interannual variability over Bangladesh during boreal summer. International Journal of Climatology, 31,8, 1192-1204 doi: https://doi.org/10.1002/joc.2146.
Fujinami, H., Yasunari, T., & Morimoto, A., (2014): Dynamics of distinct intraseasonal oscillation in summer monsoon rainfall over the Meghalaya–Bangladesh–western Myanmar region: covariability between the tropics and mid-latitudes. Climate Dynamics, 43,7-8, 2147-2166. DOI 10.1007/s00382-013-2040-1
Fukutomi, Y., & Yasunari, T., (1999): 10-25 day intraseasonal variations of convection and circulation over East Asia and western North Pacific during early summer. Journal of the Meteorological Society of Japan. Ser. II, 77,3, 753-769 doi:https://doi.org/10.2151/jmsj1965.77.3_753.
Fukutomi, Y., & Yasunari, T., (2002): Tropical—Extratropical Interaction Associated with the 10—25-day Oscillation over the Western Pacific during the Northern Summer. Journal of the Meteorological Society of Japan. Ser. II, 80,2, 311-331 doi:https://doi.org/10.2151/jmsj.80.311.
Gilman, D. L., Fuglister, F. J., & Mitchell Jr, J. M., (1963): On the power spectrum of “red noise”. Journal of the Atmospheric Sciences, 20,2, 182-184 doi:https://doi.org/10.1175/1520-0469(1963)020<0182:OTPSON>2.0.CO;2. https://doi.org/10.1175/1520-0469(1963)020<0182:OTPSON>2.0.CO;2
Gong, D. Y., Wang, S. W., & Zhu, J. H., (2001): East Asian winter monsoon and Arctic oscillation. Geophysical Research Letters, 28,10, 2073-2076. https://doi.org/10.1029/2000GL012311
Hoskins, B. J., & Ambrizzi, T., (1993): Rossby wave propagation on a realistic longitudinally varying flow. Journal of the Atmospheric Sciences, 50,12, 1661-1671. https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2
Hsu, P.-C., Lee, T.-H., Tsou, C.-H., Chu, P.-S., Qian, Y., & Bi, M., (2017): Role of scale interactions in the abrupt change of tropical cyclone in autumn over the western North Pacific. Climate Dynamics, 49,9-10, 3175-3192. DOI 10.1007/s00382-016-3504-x
ICO, (2016): International coffe orgatization (ICO) annual review 2016/17
Kemball-Cook, S., & Wang, B., (2001): Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. Journal of Climate, 14,13, 2923-2942. https://doi.org/10.1175/1520-0442(2001)014<2923:EWAASI>2.0.CO;2
Kendall, M., (1975): Rank correlation methods. 2nd impression. Charles Griffin and Company Ltd. London and High Wycombe.
Kikuchi, K., & Wang, B., (2009): Global perspective of the quasi-biweekly oscillation. Journal of Climate, 22,6, 1340-1359. https://doi.org/10.1175/2008JCLI2368.1
Kiladis, G. N., & Weickmann, K. M., (1997): Horizontal structure and seasonality of large-scale circulations associated with submonthly tropical convection. Monthly Weather Review, 125,9, 1997-2013. https://doi.org/10.1175/1520-0493(1997)125<1997:HSASOL>2.0.CO;2
Ko, K.-C., & Hsu, H.-H., (2009): ISO modulation on the submonthly wave pattern and recurving tropical cyclones in the tropical western North Pacific. Journal of climate, 22,3, 582-599. https://doi.org/10.1175/2008JCLI2282.1
Kulkarni, A., Kripalani, R., Sabade, S., & Rajeevan, M., 2011: Role of intra-seasonal oscillations in modulating Indian summer monsoon rainfall. Climate Dynamics, 36,5-6, 1005-1021. DOI 10.1007/s00382-010-0973-1
Lau, K., & Chan, P., (1986): The 40–50 day oscillation and the El Niño/Southern Oscillation: A new perspective. Bulletin of the American Meteorological Society, 67,5, 533-534. https://doi.org/10.1175/1520-0477(1986)067<0533:TDOATE>2.0.CO;2
Lau, K., & Yang, S., (1997): Climatology and interannual variability of the Southeast Asian summer monsoon. Advances in Atmospheric Sciences, 14,2, 141-162 doi:https://doi.org/10.1007/s00376-997-0016-y.
Lau, K.-H., & Lau, N.-C., (1990): Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances. Monthly Weather Review, 118,9, 1888-1913. https://doi.org/10.1175/1520-0493(1990)118<1888:OSAPCO>2.0.CO;2
Lau, W. K.-M., & Waliser, D. E. (2011). Intraseasonal variability in the atmosphere-ocean climate system: Springer Science & Business Media.
Li, C., Li, T., & Zheng, B., (2018): Characteristic interdecadal change of quasi-biweekly and intraseasonal oscillations of summer convection over the South China Sea and the Western Pacific. Dynamics of Atmospheres and Oceans, 83, 41-52 doi:https://doi.org/10.1016/j.dynatmoce.2018.05.006.
Li, C., Li, T., Lin, A., Gu, D., & Zheng, B., (2015): Relationship between summer rainfall anomalies and sub-seasonal oscillations in South China. Climate Dynamics, 44,1-2, 423-439 doi:https://doi.org/10.1007/s00382-014-2172-y.
Madden, R. A., & Julian, P. R., (1971): Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. Journal of Atmospheric Sciences, 28,5, 702-708 doi:https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.
Madden, R. A., & Julian, P. R., (1972): Description of global-scale circulation cells in the tropics with a 40–50 day period. Journal of Atmospheric Sciences, 29,6, 1109-1123 doi:https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.
Madden, R. A., & Julian, P. R., (1972): Description of global-scale circulation cells in the tropics with a 40–50 day period. Journal of Atmospheric Sciences, 29,6, 1109-1123 doi:https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.
Maloney, E. D., & Dickinson, M. J., (2003): The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic-scale disturbances. Journal of the Atmospheric Sciences, 60,17, 2153-2168. https://doi.org/10.1175/1520-0469(2003)060<2153:TIOATE>2.0.CO;2
Mao, J., & Chan, J. C., (2005): Intraseasonal variability of the South China Sea summer monsoon. Journal of Climate, 18,13, 2388-2402 doi:https://doi.org/10.1175/JCLI3395.1.
Matsumoto, J., (1997): Seasonal transition of summer rainy season over Indochina and adjacent monsoon region. Advances in Atmospheric Sciences, 14,2, 231-245 doi:https://doi.org/10.1007/s00376-997-0022-0.
Matsumoto, J., (1997): Seasonal transition of summer rainy season over Indochina and adjacent monsoon region. Advances in Atmospheric Sciences, 14,2, 231-245.
Misra, V., & DiNapoli, S., (2014): The variability of the Southeast Asian summer monsoon. International Journal of Climatology, 34,3, 893-901 doi:https://doi.org/10.1002/joc.3735.
Ngo-Thanh, H., Ngo-Duc, T., Nguyen-Hong, H., Baker, P., & Phan-Van, T., (2018): A distinction between summer rainy season and summer monsoon season over the Central Highlands of Vietnam. Theoretical and Applied Climatology, 132,3-4, 1237-1246 doi:https://doi.org/10.1007/s00704-017-2178-6.
Nguyen, D. N., & Nguyen, T. H. (2004). Climate and climate resources of Vietnam (in Vietnamese). Hanoi: Agriculture Publisher.
Nguyen, D. Q., Renwick, J., & McGregor, J., (2014): Variations of surface temperature and rainfall in Vietnam from 1971 to 2010. International Journal of Climatology, 34,1, 249-264 doi:https://doi.org/10.1002/joc.3684.
Nguyen‐Le, D., Matsumoto, J., & Ngo‐Duc, T., (2014): Climatological onset date of summer monsoon in Vietnam. International Journal of Climatology, 34,11, 3237-3250 doi: https://doi.org/10.1002/joc.3908.
Nguyen-Le, D., Matsumoto, J., & Ngo-Duc, T., (2015): Onset of the rainy seasons in the eastern Indochina Peninsula. Journal of Climate, 28,14, 5645-5666 doi:https://doi.org/10.1175/JCLI-D-14-00373.1.
Nguyen-Thi, H. A., Matsumoto, J., Ngo-Duc, T., & Endo, N., (2012): A climatological study of tropical cyclone rainfall in Vietnam. SOLA, 8, 41-44. https://doi.org/10.2151/sola.2012-011
Nguyen-Xuan, T., Ngo-Duc, T., Kamimera, H., Trinh-Tuan, L., Matsumoto, J., Inoue, T., & Phan-Van, T., (2016): The Vietnam gridded precipitation (VnGP) dataset: construction and validation. SOLA, 12, 291-296 doi:https://doi.org/10.2151/sola.2016-057.
Park, T.-W., Ho, C.-H., & Yang, S., 2011: Relationship between the Arctic Oscillation and cold surges over East Asia. Journal of climate, 24,1, 68-83. https://doi.org/10.1175/2010JCLI3529.1
Pham, N. T., & Phan, T. D. (1993). Climate of Vietnam. Hanoi, Vietnam: Science and Technics Publishing House.
Pham, X. T., Fontaine, B., & Philippon, N., (2010): Onset of the summer monsoon over the southern Vietnam and its predictability. Theoretical and Applied Climatology, 99,1-2, 105-113. DOI 10.1007/s00704-009-0115-z
Pham‐Thanh, H., van der Linden, R., Ngo‐Duc, T., Nguyen‐Dang, Q., Fink, A. H., & Phan‐Van, T., (2020): Predictability of the rainy season onset date in Central Highlands of Vietnam. International Journal of Climatology, 40,6, 3072-3086 doi:https://doi.org/10.1002/joc.6383.
Phan-Van, T., Nguyen-Xuan, T., Van Nguyen, H., Laux, P., Pham-Thanh, H., & Ngo-Duc, T., (2018): Evaluation of the NCEP Climate Forecast System and its downscaling for seasonal rainfall prediction over Vietnam. Weather and Forecasting, 33,3, 615-640. https://doi.org/10.1175/WAF-D-17-0098.1
Qi, Y., Li, T., Zhang, R., & Chen, Y., (2019): Interannual relationship between intensity of rainfall intraseasonal oscillation and summer-mean rainfall over Yangtze River Basin in eastern China. Climate Dynamics, 1-20 doi:https://doi.org/10.1007/s00382-019-04680-w.
Qi, Y., Zhang, R., Li, T., & Wen, M., (2008): Interactions between the summer mean monsoon and the intraseasonal oscillation in the Indian monsoon region. Geophysical Research Letters, 35,17 doi:https://doi.org/10.1029/2008GL034517.
Schiemann, R., Lüthi, D., & Schär, C., (2009): Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region. Journal of climate, 22,11, 2940-2957. https://doi.org/10.1175/2008JCLI2625.1
Sen, P. K., (1968): Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical association, 63,324, 1379-1389 doi:10.1080/01621459.1968.10480934.
Shoji, T., Kanno, Y., Iwasaki, T., & Takaya, K., (2014): An isentropic analysis of the temporal evolution of East Asian cold air outbreaks. Journal of climate, 27,24, 9337-9348. https://doi.org/10.1175/JCLI-D-14-00307.1
Takahashi, H. G., & Yasunari, T., (2006): A climatological monsoon break in rainfall over Indochina—A singularity in the seasonal march of the Asian summer monsoon. Journal of Climate, 19,8, 1545-1556 doi:https://doi.org/10.1175/JCLI3724.1.
Takaya, K., & Nakamura, H., (2005): Mechanisms of intraseasonal amplification of the cold Siberian high. Journal of the Atmospheric Sciences, 62,12, 4423-4440. https://doi.org/10.1175/JAS3629.1
Truong, N. M., & Tuan, B. M., (2018): Large‐scale patterns and possible mechanisms of 10–20‐day intra‐seasonal oscillation of the observed rainfall in Vietnam. International Journal of Climatology, 38,10, 3801-3821 doi:https://doi.org/10.1002/joc.5534.
Truong, N. M., & Tuan, B. M., (2019): Structures and Mechanisms of 20–60-Day Intraseasonal Oscillation of the Observed Rainfall in Vietnam. Journal of Climate, 32,16, 5191-5212.
Tuan, B. M., (2019): Extratropical Forcing of Submonthly Variations of Rainfall in Vietnam. Journal of Climate, 32,8, 2329-2348 doi:https://doi.org/10.1175/JCLI-D-18-0453.1.
Vu-Thanh, H., Ngo-Duc, T., & Phan-Van, T., (2014): Evolution of meteorological drought characteristics in Vietnam during the 1961–2007 period. Theoretical and Applied Climatology, 118,3, 367-375. 375. DOI 10.1007/s00704-013-1073-z
Wang, B., & LinHo, (2002): Rainy season of the Asian–Pacific summer monsoon. Journal of Climate, 15,4, 386-398 doi:https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.
Wang, M., & Duan, A., (2015): Quasi-biweekly oscillation over the Tibetan Plateau and its link with the Asian summer monsoon. Journal of climate, 28,12, 4921-4940. https://doi.org/10.1175/JCLI-D-14-00658.1
Wang, X., Chen, G., & Huang, R., (2016): Different characteristics of the quasi-biweekly oscillation over the South China Sea in two boreal summer stages. Theoretical and Applied Climatology, 126,1-2, 1-13 doi:https://doi.org/10.1007/s00704-015-1550-7.
Wheeler, M. C., & Hendon, H. H., (2004): An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Monthly weather review, 132,8, 1917-1932. https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
Wu, L., Wen, Z., & Wu, R., (2015): Influence of the monsoon trough on westward-propagating tropical waves over the western North Pacific. Part I: Observations. Journal of Climate, 28,18, 7108-7127 doi:https://doi.org/10.1175/JCLI-D-14-00806.1.
Wu, P., Fukutomi, Y., & Matsumoto, J., (2012): The impact of intraseasonal oscillations in the tropical atmosphere on the formation of extreme central Vietnam precipitation. SOLA, 8, 57-60. https://doi.org/10.2151/sola.2012-015
Xu, Z., Li, T., & Fan, K., (2017): The weakened intensity of the atmospheric quasi-biweekly oscillation over the western North Pacific during late summer around the late 1990s. Journal of Climate, 30,24, 9807-9826 doi:https://doi.org/10.1175/JCLI-D-16-0759.1.
Yang, J., Bao, Q., Wang, B., Gong, D.-Y., He, H., & Gao, M.-N., (2014): Distinct quasi-biweekly features of the subtropical East Asian monsoon during early and late summers. Climate Dynamics, 42,5-6, 1469-1486 doi:https://doi.org/10.1007/s00382-013-1728-6.
Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., & Kitoh, A., (2012): APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bulletin of the American Meteorological Society, 93,9, 1401-1415 doi:https://doi.org/10.1175/BAMS-D-11-00122.1.
Yen, M.-C., Chen, T.-C., Hu, H.-L., Tzeng, R.-Y., DINH, D. T., NGUYEN, T. T. T., & Wong, C. J., (2011): Interannual variation of the fall rainfall in Central Vietnam. Journal of the Meteorological Society of Japan. Ser. II, 89, 259-270 doi:https://doi.org/10.2151/jmsj.2011-A16.
Yen, M.-C., Peng, C.-M., Chen, T.-C., Chen, C.-S., Lin, N.-H., Tzeng, R.-Y., . . . Lin, C.-C., (2013): Climate and weather characteristics in association with the active fires in northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment. Atmospheric Environment, 78, 35-50 doi:https://doi.org/10.1016/j.atmosenv.2012.11.015.
Yokoi, S., & Matsumoto, J., (2008): Collaborative effects of cold surge and tropical depression–type disturbance on heavy rainfall in central Vietnam. Monthly weather review, 136,9, 3275-3287. https://doi.org/10.1175/2008MWR2456.1
Yokoi, S., & Satomura, T., (2005): An observational study of intraseasonal variations over Southeast Asia during the 1998 rainy season. Monthly weather review, 133,7, 2091-2104 doi:https://doi.org/10.1175/MWR2967.1.
Yokoi, S., Satomura, T., & Matsumoto, J., (2007): Climatological characteristics of the intraseasonal variation of precipitation over the Indochina Peninsula. Journal of Climate, 20,21, 5301-5315 doi:https://doi.org/10.1175/2007JCLI1357.1.
Zhang, Y., Li, T., Wang, B., & Wu, G., (2002): Onset of the summer monsoon over the Indochina Peninsula: Climatology and interannual variations. Journal of Climate, 15,22, 3206-3221 doi:https://doi.org/10.1175/1520-0442(2002)015<3206:OOTSMO>2.0.CO;2.
Zhang, Y., Sperber, K. R., & Boyle, J. S., (1997): Climatology and interannual variation of the East Asian winter monsoon: Results from the 1979–95 NCEP/NCAR reanalysis. Monthly Weather Review, 125,10, 2605-2619. https://doi.org/10.1175/1520-0493(1997)125<2605:CAIVOT>2.0.CO;2
Zhou, W., & Chan, J. C., (2005): Intraseasonal oscillations and the South China Sea summer monsoon onset. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25,12, 1585-1609. https://doi.org/10.1002/joc.1209