跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林美靜
Mei-Jing Lin
論文名稱: An FMRI Investigation of Malleable Numerical Representation
指導教授: 張智宏
Erik Chihhung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 認知與神經科學研究所
Graduate Institute of Cognitive and Neuroscience
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 114
中文關鍵詞: 數字表徵催眠提示功能性磁振造影
外文關鍵詞: Numerical representation, Hypnotic suggestion, FMRI
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 數字表徵可能以多重形態存在於人類認知系統。SNARC效應和FoNARC效應分別說明了數字表徵除了有離散性的線性順序特性,也具備連續性強弱大小量特性,而目前尚未有研究探討兩類表徵間的關係。本研究以催眠提示作為操弄數字表徵中既有之順序或量概念之工具,以探討兩者相互轉換時之關係為何。
    研究一探討非催眠提示在聽覺奇偶數判斷作業上之SNARC強度與受試者催眠易感性程度間的相關,分別給予兩組受試者逆向與順向提示後進行作業;結果顯示聽覺奇偶數判斷作業的 SNARC 強度未如以往呈現視覺數字刺激之研究所發現般穩定,但接受逆向提示之受試者,其逆向SNARC強度和催眠易感性程度達顯著正相關,這說明即使在非催眠的情況下,催眠易感性程度仍可作為提示效果之預測指標,而順逆向提示結果之差異可能在其誘受試者注意力投入程度之差異。
    研究二則以催眠提示操弄數字表徵中「順序」或「量」的概念,藉由 SNARC與FoNARC 效應來觀察這兩種概念互相轉換;接受測試高催眠易感性受試者裡,一組接受操弄量之順/逆向提示、另一組接受操弄順序之順/逆向提示後,以空間 (左右按鍵) 或非空間 (輕重握力) 反應進行視覺奇偶數判斷作業。結果顯示在給予操弄量提示之情況下,順/逆向提示和空間/非空間反應方式達顯著交互作用;在順序提示情況則無此效果。此結果意味著「數字表徵中,僅被操弄的量概念轉換為非空間反應碼之效率,強過於其轉換為空間反應碼之效率」;也就是說:當受試者心中量概念被加強或反轉時,較易自動對應到非空間反應碼;但順序概念被加強或反轉時,卻不一定會轉換成相應之空間反應碼或非空間反應碼。而從腦造影的結果發現:(1) 在給予操弄順序之順向催眠提示下,SNARC強度和右背外側前額皮質的血氧濃度變化達顯著相關;(2) 而在給予操弄量之順向催眠提示下,FoNARC強度和左腹側頂葉區的血氧濃度變化達顯著相關; (3) 但在給予操弄量之反向催眠提示下,SNARC強度和右前額區、左角回及右丘腦的血氧濃度變化達顯著相關;(4) 反之,在給予操弄順序之反向催眠提示下,FoNARC強度和左前外側額葉皮質及左後側頂葉內溝血氧濃度變化達顯著相關。此研究之結果發現了不同型態數字表徵間訊息互通時的不對稱關係及其對應的神經機制,未來可進一步探討數字表徵中順序及量概念的本質。


    Numbers can be mentally represented in distinct forms: While the SNARC effect indicates the representations of a number line with discrete rank units, the FoNARC effect illustrates a magnitude form associated with continuous quantity. The current study aims to investigate the relationship between the rank and the magnitude forms of numerical representation by using hypnotic suggestion as a tool to alter the conversion between the two forms.
    The Study 1 investigated the correlation between the strength of SNARC and hypnotic susceptibility under the influence of non-hypnotic suggestions. One group of participants received suggestions of the number-space mapping reversing the ordinary order, and the other group received ordinary suggestions. The results showed that the strength of the auditory SNARC was not as stable as those reported in previous studies presenting numerical information visually. However, under the reverse suggestion, the strength of SNARC was significantly correlated with hypnotic susceptibility. We speculate that under unfamiliar and attention-demanding circumstances, hypnotic susceptibility could be a significant predictor of the suggestion effect, even under non-hypnotic states.
    The aim of Study 2 was to examine the conversion across rank/magnitude forms of numerical representation and the underlying neural mechanisms. Here one group of participants received the hypnotic suggestion of manipulated rank, and the other group received suggestion on manipulated magnitude before performing a visual parity judgment requiring spatial or non-spatial responses. The behavioral results showed a significant interaction between the type of suggestion and response under the manipulated magnitude condition. This finding implies that only the altered magnitude form could be represented by the non-spatial response but not by the spatial response. In other words, the altered magnitude form and the altered rank could not easily associate with each other and be significantly represented by the spatial response and the non-spatial response.
    As for the FMRI results, the strength of SNARC in the ordinary suggestion (OS) condition of the rank group correlated with the activation in the right dorsolateral prefrontal cortex, which suggested this region to be involved in the numerical rank that represents the knowledge of rank form. Conversely, the strength of FoNARC in OS condition the magnitude group correlated with the activation in the left ventral intraparietal area, which suggested this region to be involved in the numerical magnitude that represents the knowledge of magnitude form. Interestingly, the strength of SNARC in the reverse suggestion (RS) of the magnitude group correlated with the activation in the right superior frontal area, the left angular gyrus and the right thalamus, which suggested the regions to be processing the conversion from the reversed magnitude form to the rank form. Conversely, the strength of FoNARC in the RS condition of the rank group correlated with the activation in the left ventrolateral prefrontal cortex and the left posterior intraparietal sulcus, which suggested these regions to be processing the conversion from the reversed rank form to the magnitude form. To conclude, these findings demonstrate an asymmetric flow of information between the numerical magnitude and rank in numerical representations: the processes of that the altered magnitude and the altered rank representations elicit to each other needed the resources both related the numerical magnitude and the numerical rank; especially the processing of that the altered magnitude form elicit the rank form (namely represented by the spatial response) needed more resources rather the opposite direction.

    Abstract ...................................................i 摘要 .................................................... iii Acknowledgements .......................................... v Table of contents ........................................ vi List of figures ........................................ viii List of tables ........................................... ix 1. Introduction ........................................... 1 1.1 Theoretical considerations and empirical findings of numerical representations ................................. 1 1.1.1 The triple code model of numerical representation ... 1 1.1.2 The SNARC effect .....................................2 1.1.3 The FoNARC effect ................................... 3 1.1.4 The communication across rank/magnitude form of numerical representation .................................. 4 1.2 The hypnotic suggestion and cognitive neuroscience .... 9 1.2.1 The way to measure the hypnotic susceptibility ...... 9 1.2.2 How hypnosis and suggestion provide a powerful tool for exploring cognitive processing? .......................... 11 1.3 Research goals ....................................... 12 2. Study 1: Differential Auditory SNARC Effect in Young Adults along the Spectrum of Hypnotic Susceptibility ..... 15 2.1 Method ............................................... 16 2.1.1 Participants ....................................... 16 2.1.2 Stimuli ............................................ 16 2.1.3 Procedures ......................................... 16 2.2 Results .............................................. 17 2.3 Discussion ........................................... 21 3. Study 2: The Influence of Hypnotic Suggestion on SNARC and FoNARC Effect ............................................ 23 3.1 Method ............................................... 23 3.1.1 Participants ....................................... 23 3.1.2 Apparatus .......................................... 24 3.1.3 Stimuli ............................................ 24 3.1.4 Procedure .......................................... 25 3.1.5. Expected Behavioral Results ....................... 27 3.1.6 Pre-processing and statistical analyses of FMRI data 28 3.2 Behavioral results ................................... 35 3.3 FMRI results ......................................... 40 3.3.1 Voxelwise results for the numerical magnitude and numerical rank ........................................... 40 3.3.2 ROI analysis of the numerical magnitude and rank based on the unique task-related activation .................... 44 3.3.3 ROI analysis of the numerical magnitude and rank based on the previous literature ............................... 47 3.4 Discussion ........................................... 54 3.4.1 The numerical magnitude represented by spatial response and non-spatial responses..................................55 3.4.2 The numerical rank represented by spatial response and non-spatial response ..................................... 58 4. General Discussion..................................... 61 4.1 The hypnotic suggestion and the hypnotic susceptibility .......................................................... 61 4.2 The communication across magnitude/order form of numerical representation ................................. 62 4.3 Conclusions .......................................... 64 5. Limitations and Future Directions ..................... 65 References ............................................... 68 Appendix A: Building the Taiwanese Database of the Harvard Group Scale of Hypnotic Susceptibility ................... 75 A.1 Method ............................................... 75 A.1.1 Participants ....................................... 75 A.1.2 Procedures ......................................... 75 A.2 Results .............................................. 77 A.2.1 Mean total scores and sample distribution........... 77 A.2.2 Item difficulty ..................................... 79 A.2.3 Reliability ........................................ 81 A.3 Discussion ........................................... 83 A.4 Questionnaire ........................................ 85 Appendix B: Tables ....................................... 98

    Adams, J. W. (2007). Individual differences in mathematical ability: Genetic, cognitive and behavioural factors. Journal of Research in Special Educational Needs, 7, 97– 103.
    Andresa, M., Ostryc, D. J., Nicola, F., & Pause, T. (2008). Time course of number magnitude interference during grasping. Cortex, 44, 414– 419.
    Arabib, M. A., Liebal, K., & Pika, S. (2008). Primate Vocalization, Gesture, and the Evolution of Human Language. Current Anthropology, 49(6), 1053– 1076.
    Badets, A., Andres, M., Di Luca, S., & Pesenti, M. (2007). Number magnitude potentiates action judgments. Experimental Brain Research, 180, 525– 534.
    Barsalou, L.W. (2008). Cognitive and neural contributions to understanding the conceptual system. Current Directions in Psychological Science, 17(2), 91– 95.
    Bowers, K. S. (1998). Waterloo-Stanford group scale of hypnotic susceptibility, Form C: Manual and response booklet. International Journal of Clinical and Experimental Hypnosis, 46(3), 250-268.
    Braffman, W., & Kirsch, I. (1999). Imaginative suggestibility and hypnotisability: an
    empirical analysis. Journal of Personality and Social Psychology, 77(3), 578–587.
    Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1525), 1831– 1840.
    Butterworth, B. (1999).The mathematical brain. London: Macmillan.
    Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Sciences, 14, 534– 541.
    Campbell, J. I. D., & Clark, J. M. (1988). An encoding-complex view of cognitive number processing: Comment on McCloskey, Sokol, and Goodman (1986). Journal of Experimental Psychology: General, 117, 204– 214.
    Cantlon, J. F., Brannon, E. M., Carter, E. J., & Pelphrey, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. PLoS, Biology, 4(5), e125.
    Chochon, F., Cohen, L., van de Moortele, P. F., & Dehaene, S. (1999). Differential contributions of the left and right inferior parietal lobules to number processing. Journal of Cognitive Neuroscience, 11, 617– 630.
    Clark, J. M., & Campbell, J. I. D. (1991). Integrated versus modular theories of number skills and acalculia. Brain and Cognition, 17, 204– 239.
    Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. New York,NY: Routledge Academic.
    Comey, G. & Kirsch, I. (1999). Itentional and spontaneous imagery in hypnosis: the phenomenology of hypnotic responding. International Journal of Clinical and Experimental Hypnosis, 47, 65– 85.
    Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162– 173.
    de Hevia, M. D., Vallar, G., & Girelli, L. (2008). Visualizing numbers in the mindʼ s eye: The role of visuo-spatial processes in numerical abilities. Neuroscience and Biobehavioral Reviews, 32, 1361– 1372.
    Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1– 42.
    Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122, 371– 396.
    Dehaene, S., Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical cognition, 1, 83– 120.
    Dehaene, S. (2009). Origins of mathematical intuitions: The case of arithmetic. Annals of the New York Academy of Sciences, 1156, 232– 259.
    Duhamel, J. R., Colby, C. L., & Goldberg, M. E. (1998). Ventral intraparietal area of the macaque: congruent visual and somatic response properties. Journal of Neurophysiology,
    79, 126– 136.
    Eger, E., Sterzer, P., Russ, M. O., Giraud, A. L., & Kleinschmidt, A. (2003). A supramodel number representation in human intraparietal cortex. Neuron, 37(4), 719– 725.
    Egner, T., Jamieson, G., & Gruzelier, J. (2005). Hypnosis decouples cognitive control from conflict monitoring processes of the frontal lobe. Neuroimage, 27(4), 969– 978.
    Esterman, M., Tamber-Rosenau, B. J., Chiu, Y. C., & Yantis, S. (2010). Avoiding non-independence in fMRI data analysis: leave one subject out. Neuroimage, 50(2), 572–576.
    Everling, S., Tinsley, C. J., Gaffan, D., & Duncan, J. (2002). Filtering of neural signals by focused attention in the monkey prefrontal cortex. Nature Neuroscience, 5, 671– 676.
    Fias, W., Lammertyn, J., Caessens, B., Orban, G. A. (2007). Processing of abstract ordinal knowledge in the horizontal segment of the intraparietal sulcus. Journal of Neuroscience,
    27, 8952– 8956.
    Fischer, M.H., & Hill, R. (2004). A SNARC in the dark: input modality affects number representation. 22nd European Workshop of Cognitive Neuropsychology, Bressanone, Italy, 26– 31.
    Fischer, M. H. (2006). The future for SNARC could be stark... . Cortex, 42, 1066– 1068.
    Fischer, M. H., & Zwaan, R. A. (2008). Embodied language: A review of the role of the motor system in language comprehension. Quarterly Journal of Experimental Psychology,
    61(6), 825– 850.
    Freedman, D. J., & Assad, J. A. (2009). Distinct encoding of spatial and non-spatial factors in parietal cortex. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 29(17), 5671– 5680.
    Gallistell, R. C., & Gellman, R. (2000). Non-verbal numerical cognition: from reals to integers. Trends in Cognitive Science, 4(2), 59– 65.
    Hilgard, E. R., Crawford, H. J., & Wert, A. (1979). The Stanford hypnotic arm levitation induction and test (SHALIT): a six minute hypnotic induction and measurement scale. International Journal of Clinical and Experimental Hypnosis, 27(2), 111-124.
    Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6, 435– 448.
    Iani, C., Ricci, F., Gherri, E., & Rubichi, S. (2006). Hypnotic suggestion modulates cognitive conflict: the case of the flanker compatibility effect. Psychological Science, 17(8), 721–727.
    Izard, V., Dehaene-Lambertz, G., & Dehaene, S. (2008). Distinct cerebral pathways for object identity and number in human infants. PLoS, Biology, 6, e11.
    Kihlstrom, J. F. (1992). Hypnosis: a sesquicentennial essay. International Journal of Clinical and Experimental Hypnosis, 50, 301–314.
    Kosslyn, S. M., Thompson, W. L., Costantini-Ferrando, M. F., Alpert, N. M., & Spiegel, D. (2000). Hypnotic visual illusion alters color processing in the brain. American Journal of Psychiatry, 157, 1279–1284.
    Krause, F., Bekkering, H., & Lindemann, O. (2013). A feeling for numbers: Shared metric for symbolic and tactile numerosities. Frontiers in Psychology, 4, 7.
    Krause, F., Lindemann, O., Toni1, I., & Bekkering, H. (2014). Different brains process numbers differently: structural bases of individual differences in spatial and nonspatial
    number representations. Journal of Cognitive Neuroscience, 26(4), 768– 776
    Lindemann, O., Abolafia, J. M., Girardi, G., & Bekkering, H. (2007). Getting a grip on numbers: Numerical magnitude priming in object grasping. Journal of Experimental Psychology: Human Perception and Performance, 33, 1400– 1409.
    Marshuetz, C., Reuter-Lorenz, P. A., Smith, E. E., Jonides, J., & Noll, D. C. (2006). Working memory for order and the parietal cortex: an event-related functional magnetic resonance imaging study. Neuroscience, 139, 311– 316.
    McAndrews, M. P., Milner, B. (1991). The frontal cortex and memory for temporal order. Neuropsychologia, 29, 849– 859.
    McCloskey, M., Sokol, S. M., & Goodman, R. A. (1986). Cognitive processes in verbal-number production: inferences from the performance of brain-damaged subjects. Journal of Experimental Psychology, 114, 307– 330.
    Milner, B. (1971). Interhemispheric differences in the localization of psychological processes in man. British Medical Bulletin, 27, 272– 277.
    Moyer, R. S., & Landauer, T. K. (1967). Time required for judgments of numerical inequality. Nature, 215, 1519– 1520
    Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual Reviews of Neuroscience, 32, 185– 208.
    Ninokura, Y., Mushiake, H., & Tanji, J. (2003). Representation of the temporal order of visual objects in the primate lateral prefrontal cortex. Journal of Neurophysiology, 89, 2868–2873.
    Ninokura Y, Mushiake H, Tanji J. 2004. Integration of temporal order and object information in the monkey lateral prefrontal cortex. Journal of Neurophysiology, 91, 555– 560.
    Nuerk, H. S., Wood, G., & Willmes, K. (2005). The universal SNARC effect: the association between number magnitude and space is amodal. Experimental Psychology, 52(3), 187–194.
    Oakley, D. A., & Halligan, P. H. (2009). Hypnotic suggestion and cognitive neuroscience. Trends in Cognitive Sciences, 13(6), 264– 270.
    Peirce, J. W. (2007). PsychoPy-Psychophysics software in Python. Journal of Neuroscience Methods, 162(1-2), 8–13.
    Pesenti, M., Thioux, M., Seron, X., & De Volder, A. (2000). Neuroanatomical substrates of Arabic number processing, numerical comparison, and simple addition: a PET study. Journal of Cognitive Neuroscience, 12(3), 461– 479.
    Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44, 547– 555.
    Pinel, P., Dehaene, S., Riviere, D., & LeBihan, D. (2001). Modulation of parietal activation by semantic distance in a number comparison task. Neuroimaging, 14, 1013-1026.
    Raz A, Shapiro T, Fan J, & Posner MI. (2002). Hypnotic Suggestion and the Modulation of Stroop Interference. Archives of General Psychiatry, 59(12), 1155-1161.
    Raz, A., Kirsch, I., Pollard, J., & Nitkin-Kaner, Y. (2006). Suggestion reduces the Stroop effect. Psychological Science, 17(2), 91–95
    Saad, Z. S., Glen, D. R., Chen, G., Beauchamp, M. S., Desai, R., and Cox, R. W. (2009). A new method for improving functional-to-structural MRI alignment using local Pearson correlation. Neuroimage, 44(3), 839-848.
    Santens, S., & Gevers, W. (2008). The SNARC effect does not imply a mental number line. Cognition, 108, 263– 270.
    Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information-processing: II. Perceptual learning, automatic attending, and a general theory. Psychological Review, 84(2), 127–190.
    Shor, R. E., & Orne, E. C. (1963). Norms of the Harvard Group Scale of Hypnotic Susceptibility, Form A. International Journal of Clinical and Experimental Hypnosis, 11, 39– 47.
    Spiegel, H. (1972). An eye-roll test for hypnotizability. American Journal of Clinical Hypnosis, 15(1), 25–28.
    Spiegel, H. (1973). Manual for hypnotic induction profile: eye-roll levitation method. New York: Soni Medica.
    Spiegel, H. (1977). The hypnotic induction profile: a review of its development. Annals of the New York Academy of Sciences, 296, 129– 142.
    Temple, E., & Posner, M. I. (1998). Brain mechanisms of quantity are similar in 5-year-olds and adults. Proceedings of the National Academy of Sciences, USA, 95, 7836–7841.
    Turconi, E., & Seron, X. (2002). Dissociation between order and quantity meanings in a patient with Gerstmann syndrome. Cortex, 38, 911– 914.
    Turconi, E., Jemel, B., Rossion, B., & Seron, X. (2004). Electrophysiological evidence for differential processing of numerical quantity and order in humans. Cognitive Brain Research, 21, 22– 38.
    Turconi, E., Campbell, J. I., & Seron, X. (2006). Numerical order and quantity processing in number comparison. Cognition, 98, 273– 285.
    Tzelgov, J., Meyer, J., & Henik, A. (1992). Automatic and intentional processing of numerical information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 166.
    Vierck, E., & Kiesel, A. (2010). Congruency effects between number magnitude and response force. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 204–209.
    Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483– 488.
    Weitzenhoffer, A. M., Higard, E. R. (1959). Stanford Hypnotic Susceptibility Scale: Forms A and B. Consulting Psychologists Press, Palo Alto, California, USA.
    Weitzenhoffer, A. M., & Hilgard, E. R. (1962). Stanford Hypnotic Susceptibility Scale, Form C. Consulting Psychologists Press, Palo Alto, CA.
    Weitzenhoffer, A. M., & Hilgard, E. R. (1967). Revised Stanford Profile Scale of Hypnotic Susceptibility. Consulting Clinical Psychologists Press, Palo Alto, CA.
    Willems, R. M., & Hagoort, P. (2007). Neural evidence for the interplay between language, gesture and action: A review. Brain and Language, 101(3), 278– 298.
    Xuan, B., Zhang, D., He, S., & Chen, X. (2007). Larger stimuli are judged to last longer. Journal of Vision, 7(10), 1– 5.

    QR CODE
    :::