| 研究生: |
謝文鈞 Wen-Chun Hsieh |
|---|---|
| 論文名稱: |
材料相關之光子晶體谷拓樸邊緣態之研究 The Research of Material-Dependent Topological Valley Edge States in Photonic Crystals |
| 指導教授: | 欒丕綱 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 光子晶體 、谷拓樸邊緣態 |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要以蜂窩晶格 (honeycomb lattice) 排列之介電質圓柱所組成的光子晶體探討三種不同材料所產生谷拓樸邊緣態 (valley topological edge state)。我們先利用平面波展開法 (plane wave expansion method) 計算光子晶體的頻帶結構,再利用超晶胞 (supercell) 法計算谷拓樸邊緣態的模態色散曲線,並利用時域有限差分法 (finite difference time domain method, FDTD method) 法去模擬電磁波在光子晶體中的傳播行為。此種拓樸邊緣態是藉著使晶胞內兩圓柱的半徑不同,打破原來的蜂窩晶格的 C_3v 對稱性,將它約化成 C_3 對稱性而形成的。
在光子晶體中模擬拓樸邊緣態時,發現其手徵性 (chirality) 並不完美。我們在計算其頻帶的貝瑞曲率 (berry curvature) 後,發現其 K、K^' 點的局部陳數(local Chern number) 差異並非理論預測的等於1,而是小於1。這可能是導致手徵性不完美的原因。
最後我們也利用改變超晶胞當中介電質柱的形狀去對於不同材料產生谷拓樸邊緣態。此作法同樣也是利用打破晶胞內兩圓柱的 C_3v 對稱性將它約化成 C_3 對稱性而實現其谷拓樸邊緣態。
In this thesis, we study the topological valley-edge states propagating or localizing at the boundary between two photonic crystals consisting of dielectric cylinders arranged on a honeycomb lattice. Three different material parameters are considered. We first calculate the photonic band structures by using the plane wave expansion method. We then calculate the dispersion relation of the topological valley edge states by applying the supercell method. The detailed propagation behaviors of the electromagnetic waves of the edge states and their field patterns are obtained by implementing various FDTD simulations. The valley edge states are formed by breaking the C_3v symmetry of the original honeycomb lattice and reducing it to C_3 symmetry by making the radii of the two cylinders in the unit cell different.
When simulating the topological valley edge states, we found that the chirality of them is not perfect. According to the numerical calculation results, the difference between the local Chern numbers at the K and K’ points in the first Brillouin zone is not equal to the theoretical value of 1, but instead of value smaller than 1. This may be the cause of imperfect chirality.
Finally, we also discuss how to generate topological valley edge states by changing the shapes of the cylinders in a unit cell. The underlying mechanism for this kind of edge states is the same as before, namely reducing the original C_3v symmetry to C_3 symmetry by changing the shape of the cylinders in a unit cell of the photonic crystals.
[1] E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Physical Review Letters, 58, 2059 (1987).
[2] S. John, Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters, 58, 2486 (1987).
[3] F. D. M. Haldane & S. Raghu, Possible Realization of Directional Optical Waveguides in Photonic Crystalswith Broken Time-Reversal Symmetry, Physical Review Letters, 100, 013904 (2008)
[4] S. Raghu & F. D. M. Haldane, Analogs of quantum-Hall-effect edge states in photonic crystals ,Physical Review A, 78, 033834 (2008)
[5] Z. Wang, Y. D. Chong, J. D. Joannopoulos & M. Soljačić, Observation of unidirectional backscattering-immune topological electromagnetic states, Nature, 461, 772 (2009)
[6] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit, Photonic Floquet topological insulators, Nature, 496, 196 (2013)
[7] Youngkuk Kim, Keunsu Choi, and Jisoon Ihm, Topological domain walls and quantum valley Hall effects in silicene, Physical Review B, 89, 085429 (2014)
[8] L.H. Wu and X. Hu, Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material, Physical Review Letters, 114, 223901 (2015)
[9] Tzuhsuan Ma and Gennady Shvets, All-Si valley-Hall photonic topological insulator, New Journal of Physics, 18, 025012 (2016)
[10] Jian-Wen Dong, Xiao-Dong Chen Hanyu Zhu, Yuan Wang & Xiang Zhang, Valley photonic crystals for control of spin and topology, Nature Materials, 16, 298 (2017)
[11] Xin-Tao He、En-Tao Liang、Jia-Jun Yuan、Hao-Yang Qiu、Xiao-Dong Chen、Fu-Li Zhao1 and Jian-Wen Dong, A silicon-on-insulator slab for topological valley transport, Nature Communications, 10, 872 (2019)
[12] Klitzing, K.v., G. Dorda, and M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Physical Review Letters, 45, 494 (1980)
[13] Thouless, D.J., et al., Quantized Hall Conductance in a Two-Dimensional Periodic Potential, Physical Review Letters, 49, 405 (1982)
[14] Haldane, F.D.M., Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the" parity anomaly", Physical Review Letters, 61, 2015 (1988)
[15] C.L. Kane, and E.J. Mele, Quantum Spin Hall Effect in Graphene, Physical Review Letters 95, 226801 (2005)
[16] Ching Hua Lee, Stefan Imhof, Christian Berger, Florian Bayer, Johannes Brehm, Laurens W. Molenkamp, Tobias Kiessling & Ronny Thomale, Topolectrical Circuits, Communications Physics, 1, 39 (2018)
[17] Zhaoju Yang, Fei Gao, Xihang Shi, Xiao Lin, Zhen Gao, Yidong Chong, and Baile Zhang, Topological Acoustics, Physical Review Letters, 114, 114301 (2015)
[18] Cheng He, Xu Ni, Hao Ge, Xiao-Chen Sun, Yan-Bin Chen, Ming-Hui Lu, Xiao-Ping Liu, and Yan-Feng Chen, Acoustic topological insulator and robust one-way sound transport, Nature Physics, 12, 1124 (2016)
[19] Cserti, J. and G. Tichy, A simple model for the vibrational modes in honeycomb lattices, European Journal of Physics, 25, 723 (2004)
[20] 蔡雅雯、吳杰倫、欒丕綱, 從量子霍爾效應到拓樸光子學與拓樸聲子學, 科儀新知, 211期, 68 (2017).
[21] B. Andrei Bernevig, Taylor L. Hughes, Shou-Cheng Zhang, Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells, Science, 314, 1757 (2006)
[22] S.-s. Chern, Ann. Math 47, 85 (1964)
[23] Mar´ıa Blanco de Paz, Chiara Devescovi, Geza Giedke, Juan Jos´e Saenz, Maia G. Vergniory, Barry Bradlyn, Dario Bercioux, and Aitzol Garc´ıa- Etxarri, Tutorial: Computing Topological Invariants in 2D Photonic Crystals, Adv. Quantum Technol., 3, 1900117 (2020)
[24] Yu, R., et al., Equivalent expression of Z2 topological invariant for band insulators using the non-Abelian Berry connection, Physical Review B, 84, 075119 (2011)
[25] Weng, H., et al., Quantum anomalous Hall effect and related topological electronic states, Advances in Physics, 64, 227 (2015)
[26] Xiao-Dong Chen, Fu-Li Zhao, Min Chen, and Jian-Wen Dong, Valley-contrasting physics in all-dielectric photonic crystals:Orbital angular momentum and topological propagation, Physical Review B, 96, 020202(R) (2017)
[27] Pi-Gang Luan and Zhen Ye, Two dimensional photonic crystals (2001)
[28] Kane, C.L. and E.J. Mele, Z2 Topological Order and the Quantum Spin Hall Effect, Physical Review Letters, 95, 146802 (2005)
[29] Di Xiao, Wang Yao, and Qian Niu, Valley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transport, Physical Review Letters, 99, 236809 (2007)
[30] Xin-Tao He、En-Tao Liang、Jia-Jun Yuan、Hao-Yang Qiu、Xiao-Dong Chen、Fu-Li Zhao1 and Jian-Wen Dong, A silicon-on-insulator slab for topological valley transport, Nature Communications, 10, 872 (2019)
[31] Yao-Ting Wang, Pi-Gang Luan and Shuang Zhang, Coriolis force induced topological order for classical mechanical vibrations, New Journal of Physics, 17, 073031 (2015)
[32] 欒丕綱、陳啟昌, 光子晶體:從蝴蝶翅膀到奈米光子學 (第二版), 五南出版社 (2010)
[33] Stephan Wong, Matthias Saba, Ortwin Hess, and Sang Soon Oh, Gapless unidirectional photonic transport using all-dielectric kagome lattices, Physical Review Research, 2, 012011(R) (2020)
[34] You Wu, Xiaoyong Hu, and Qihuang Gong, Reconfigurable topological states in valley photonic crystals, Phyxical Review Materials, 2, 122201(R) (2018)
[35] Yuting Yang, Hua Jiang & Zhi Hong Hang, Topological Valley Transport in Two-dimensional Honeycomb Photonic, Scientific Reports, 8, 1588 (2018)
[36] Xiao-Dong Chen, Fu-Li Zhao, Min Chen, and Jian-Wen Dong, Valley-contrasting physics in all-dielectric photonic crystals: Orbital angular momentum and topological propagation, Physical Review B, 96, 020202(R) (2017)
[37] R.Shankar, Topological Insulators -- A review, arXiv:1804.06471v1 (2018)
[38] Wang Yao, Di Xiao, and Qian Niu, Valley-dependent optoelectronics from inversion symmetry breaking, Physical Review B, 77, 235406 (2008)
[39] Yuting Yang, Yun Fei Xu, Tao Xu, Hai-Xiao Wang, Jian-Hua Jiang, Xiao Hu, and Zhi Hong Hang, Visualization of a Unidirectional Electromagnetic Waveguide Using Topological Photonic Crystals Made of Dielectric Materials, Physical Review Letters, 120, 217401 (2018)
[40] John R. Schaibley, Hongyi Yu, Genevieve Clark, Pasqual Rivera, Jason S. Ross, Kyle L. Seyler, Wang Yao & Xiaodong Xu, Valleytronics in 2D materials, Nature Reviews Materials, 1, 16055 (2016)
[41] 馬雲鵬、姬金祖、張生俊、黃沛霖、劉戰合, 時域有限差分法(基於 MATLAB), 西安電子科技大學出版社 (2018)
[42] Jin-Wu Jiang, Bing-Shen Wang and Harold S. Park, Topologically protected interface phonons in two-dimensional nanomaterials: hexagonal boron nitride and silicon carbide, Nanoscale, 10, 13913 (2018)
[43] Meng Xiao , Guancong Ma , Zhiyu Yang , Ping Sheng, Z. Q. Zhang and C. T. Chan23 FEBRUARY | DOI: 10.1038/NPHYS3228(2015)