| 研究生: |
蘇峻賢 Chun-Hsien Su |
|---|---|
| 論文名稱: |
利用帶有穿膜序列的MyoD重組蛋白誘導體細胞表現內生性肌肉基因 Using cell-penetrating recombinant MyoD protein to induce endogenous myogenic genes in somatic cells |
| 指導教授: |
陳盛良
Shen-Liang Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 肌肉 、發育 、肌肉萎縮症 |
| 外文關鍵詞: | MyoD, DMD, Myogenesis |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
杜顯氏肌肉萎縮症Duchenne muscular dystrophy (DMD)是目前號發率最高的一種肌肉萎縮症,其發生的原因為dystrophy基因突變缺陷導致肌肉細胞不能正常產生的Dystrophin蛋白質進而導致心肌和骨骼肌結構不穩定變得極度容易受損,在修補的過程中耗盡satellite cell pool,最終肌肉被脂肪和結締組織取代導致死亡(Wallace and McNally, 2009);此病沒有根治的方法,有許多正在進行研究的治療方式,這些方式多需要利用病毒(virus)感染細胞有外來的基因序列嵌入到基因體的疑慮,所以我們利用安全性疑慮較低的蛋白質,將肌肉重要決定因子MyoD基因建構並純化出MyoD protein讓其帶有穿膜序列稱為CPP-MyoD,試圖用此蛋白質將fibroblast cell誘導轉化成myogenic progenitor cells;在利reporter assay確認純化的蛋白質有功能性後我們成功的在C3H10T1/2 cells中誘導內生性的MyoD mRNA並且使之出現細胞型態上的變化和少量的多核細胞,由於並沒有更進一步的分化加上western blot結果顯示沒有內生性MyoD protein的表現,我們利用加入RISC inhibitor aurintricarboxylic acid (ATA)和PKR inhibitor C16來幫助MyoD protein表現,結果並沒有太大的差異,但是在確認加入CPP-MyoD是否會導致內生性MyoD protein表現下降的實驗中發現加入帶有穿膜序列的蛋白質確實使MyoD protein表現下降,由RT-PCR方式檢測發現MyoD mRNA表現也有下降,推測加入的高量蛋白質會造成細胞環境壓力造成後續的分化無法進行,未來可以嘗試立用長期處理低量蛋白質的方式以達到降低環境壓力。
Duchenne muscular dystrophy (DMD) is a kind of muscular dystrophy , which affects about one in 5,000 males at birth. It is caused by mutation in dystrophy gene, patients’ muscle will repeat degeneration and regeneration and finally most of the skeletal muscle is replaced with adipose and fibrotic connective tissue. Currently, there is no cure for this disease. By using virus transfected a muscle specific transcription factor MyoD we can reprogram fibroblast into myogenic cell. Due to the viral vectors used for efficient gene transfection, it is impossible to use this myogenic cell in a clinical application. In our research we tried to use cell-penetrating peptide-fused MyoD ( CPP-MyoD ) protein to reprogram fibroblast into myoblast. We used reporter assay to test whether the CPP-MyoD has function, and found that CPP-MyoD is functional, and we also succeed to induce endogenous MyoD mRNA by treated fibroblast with CPP-MyoD, these results suggest the inducing system is workable. Unfortunately, although we can induce fibroblast’s endogenous MyoD mRNA, the efficiency of the myogenic conversion is still very low, we also found that there was no endogenous MyoD was detected in western blot test. We combine CPP-MyoD, RISC inhibitor aurintricarboxylic acid (ATA) and PKR inhibitor C16 to help fibroblast cell express endogenous MyoD protein, but the result shows that there is no difference. In another experiment, we use 10T sense MyoD cells which always express high level MyoD protein to test whether the level of MyoD protein in 10T sense MyoD cells will decrease after treat with cell-penetrating peptide-fused protein, and we found both of the level MyoD protein and MyoD mRNA become lower, these result shows that adding high concentration protein in medium will cause the increasing of environment stress and make some of the mRNA won’t translate into protein we think this is the reason why there is no endogenous MyoD protein detected in previous experiment.
Beauchamp, J.R., Heslop, L., Yu, D.S., Tajbakhsh, S., Kelly, R.G., Wernig, A., Buckingham, M.E., Partridge, T.A., and Zammit, P.S. (2000). Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151, 1221-1234.
Borello, U., Coletta, M., Tajbakhsh, S., Leyns, L., De Robertis, E.M., Buckingham, M., and Cossu, G. (1999). Transplacental delivery of the Wnt antagonist Frzb1 inhibits development of caudal paraxial mesoderm and skeletal myogenesis in mouse embryos. Development 126, 4247-4255.
Carnac, G., Primig, M., Kitzmann, M., Chafey, P., Tuil, D., Lamb, N., and Fernandez, A. (1998). RhoA GTPase and serum response factor control selectively the expression of MyoD without affecting Myf5 in mouse myoblasts. Mol Biol Cell 9, 1891-1902.
Charge, S.B., and Rudnicki, M.A. (2004). Cellular and molecular regulation of muscle regeneration. Physiol Rev 84, 209-238.
Cossu, G., Tajbakhsh, S., and Buckingham, M. (1996). How is myogenesis initiated in the embryo? Trends Genet 12, 218-223.
Davies, K.E., and Nowak, K.J. (2006). Molecular mechanisms of muscular dystrophies: old and new players. Nat Rev Mol Cell Biol 7, 762-773.
de la Serna, I.L., Carlson, K.A., and Imbalzano, A.N. (2001). Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. Nat Genet 27, 187-190.
Demarchi, F., Gutierrez, M.I., and Giacca, M. (1999). Human immunodeficiency virus type 1 tat protein activates transcription factor NF-kappaB through the cellular interferon-inducible, double-stranded RNA-dependent protein kinase, PKR. J Virol 73, 7080-7086.
Edmondson, D.G., and Olson, E.N. (1993). Helix-loop-helix proteins as regulators of muscle-specific transcription. J Biol Chem 268, 755-758.
Emery, A.E. (1993). Duchenne muscular dystrophy--Meryon's disease. Neuromuscul Disord 3, 263-266.
Hirai, H., Tani, T., and Kikyo, N. (2010). Structure and functions of powerful transactivators: VP16, MyoD and FoxA. Int J Dev Biol 54, 1589-1596.
Horsley, V., Jansen, K.M., Mills, S.T., and Pavlath, G.K. (2003). IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113, 483-494.
Hoshiya, H., Kazuki, Y., Abe, S., Takiguchi, M., Kajitani, N., Watanabe, Y., Yoshino, T., Shirayoshi, Y., Higaki, K., Messina, G., et al. (2009). A highly stable and nonintegrated human artificial chromosome (HAC) containing the 2.4 Mb entire human dystrophin gene. Mol Ther 17, 309-317.
Incitti, T., De Angelis, F.G., Cazzella, V., Sthandier, O., Pinnaro, C., Legnini, I., and Bozzoni, I. (2010). Exon skipping and duchenne muscular dystrophy therapy: selection of the most active U1 snRNA antisense able to induce dystrophin exon 51 skipping. Mol Ther 18, 1675-1682.
Koenig, M., Hoffman, E.P., Bertelson, C.J., Monaco, A.P., Feener, C., and Kunkel, L.M. (1987). Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50, 509-517.
Koenig, M., Monaco, A.P., and Kunkel, L.M. (1988). The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53, 219-228.
Lee, J.C., and Timasheff, S.N. (1981). The stabilization of proteins by sucrose. J Biol Chem 256, 7193-7201.
Mauro, A. (1961). Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9, 493-495.
Nishikawa, S., Goldstein, R.A., and Nierras, C.R. (2008). The promise of human induced pluripotent stem cells for research and therapy. Nat Rev Mol Cell Biol 9, 725-729.
Odom, G.L., Gregorevic, P., and Chamberlain, J.S. (2007). Viral-mediated gene therapy for the muscular dystrophies: successes, limitations and recent advances. Biochim Biophys Acta 1772, 243-262.
Olson, E.N. (1990). MyoD family: a paradigm for development? Genes Dev 4, 1454-1461.
Ordahl, C.P., and Williams, B.A. (1998). Knowing chops from chuck: roasting myoD redundancy. Bioessays 20, 357-362.
Parker, M.H., Seale, P., and Rudnicki, M.A. (2003). Looking back to the embryo: defining transcriptional networks in adult myogenesis. Nat Rev Genet 4, 497-507.
Piette, J., Bessereau, J.L., Huchet, M., and Changeux, J.P. (1990). Two adjacent MyoD1-binding sites regulate expression of the acetylcholine receptor alpha-subunit gene. Nature 345, 353-355.
Pourquie, O., Fan, C.M., Coltey, M., Hirsinger, E., Watanabe, Y., Breant, C., Francis-West, P., Brickell, P., Tessier-Lavigne, M., and Le Douarin, N.M. (1996). Lateral and axial signals involved in avian somite patterning: a role for BMP4. Cell 84, 461-471.
Rudnicki, M.A., and Jaenisch, R. (1995). The MyoD family of transcription factors and skeletal myogenesis. Bioessays 17, 203-209.
Sartorelli, V., Huang, J., Hamamori, Y., and Kedes, L. (1997). Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol Cell Biol 17, 1010-1026.
Tan, G.S., Chiu, C.H., Garchow, B.G., Metzler, D., Diamond, S.L., and Kiriakidou, M. (2012). Small molecule inhibition of RISC loading. ACS Chem Biol 7, 403-410.
Thayer, M.J., Tapscott, S.J., Davis, R.L., Wright, W.E., Lassar, A.B., and Weintraub, H. (1989). Positive autoregulation of the myogenic determination gene MyoD1. Cell 58, 241-248.
Tsumoto, K., Umetsu, M., Kumagai, I., Ejima, D., Philo, J.S., and Arakawa, T. (2004). Role of arginine in protein refolding, solubilization, and purification. Biotechnol Prog 20, 1301-1308.
Wadia, J.S., and Dowdy, S.F. (2002). Protein transduction technology. Curr Opin Biotechnol 13, 52-56.
Wallace, G.Q., and McNally, E.M. (2009). Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies. Annu Rev Physiol 71, 37-57.
Yun, K., and Wold, B. (1996). Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Curr Opin Cell Biol 8, 877-889.