跳到主要內容

簡易檢索 / 詳目顯示

研究生: 花初雨
Chu-Yu Hua
論文名稱: 探討粒線體Phenylalanyl-tRNA synthetase突變與活性的關聯性
Characterization of mitochondrial phenylalanyl-tRNA synthetase mutants related to activity
指導教授: 王健家
Chien-Chia Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 87
中文關鍵詞: tRNA合成酶粒線體疾病錯誤性胺醯化作用苯丙氨酸類似物
外文關鍵詞: aminoacyl-tRNA synthetase, mitochondrial disease, misaminoacylation, phenylalanine analogues
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Aminoacyl-tRNA synthetases (aaRSs)是轉譯過程必要的酵素。在真核生物細胞質phenylalanyl-tRNA synthetase (PheRS) 的結構為異型四聚體 (heterotetramer),由兩個α subunit及兩個β subunit組成。α subunit負責胺醯化作用,催化Phe-tRNAPhe的形成,反β subunit負責編輯作用,將misactivated aa-tRNAPhe水解成胺基酸及tRNAPhe。真核生物粒線體PheRS的結構為α一元體 (monomer)。過去的研究顯示,真核生物粒線體PheRS缺少編輯作用的功能。在病人研究報告顯示,致死性胎兒腦病變與粒線體的氧化磷酸化之缺陷有關,且與人類粒線體PheRS突變有關。然而,這些突變引發致死性胎兒腦病變的機制仍不清楚。本結果顯示,人類粒線體PheRS (HsPheRSm) 突變P136H及P361L可減少胺醯化的活性,但是突變A170G則否。此外,先前的研究顯示,常用於治療帕金森氏症 (Parkinson's disease) 之藥物dopa,會經過錯誤性胺醯化作用而產生dopa-tRNAPhe,導致接受藥物治療的病人體內提高了含有dopa的蛋白質含量。為了測試HsPheRSm突變對於錯誤的胺基酸之辨認,本研究使用phenylalanine類似物meta-tyrosine以及meta-fluoro-phenylalanine來當作受質。在體內實驗結果顯示,含有HsPheRSm突變的細胞生長在含有錯誤的胺基酸之培養基中,並沒有發現到生長上的差異。後續研究將繼續探討HsPheRSm突變與錯誤性胺醯化作用的關聯性。


    Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes for protein translation. In eukaryote, cytoplasmic phenylalanine-tRNA synthetase (PheRS) is a heterotetramer composed of two alpha and two beta subunits. The alpha subunit of PheRS provides an active site for catalyzing the formation of Phe-tRNAPhe, whereas the beta subunit is responsible for editing misactivated aa-tRNAPhe. In contrast to the cytoplasmic PheRS, the mitochondrial PheRS is a monomer, which contains only the alpha subunit and lacks the editing activity. Previous studies showed that oxidative phosphorylation (OXPHOS) defect-related fatal infantile encephalopathy is associated with mutations of human mitochondrial PheRS (HsPheRSm). However, the mechanisms leading the encephalopathy are still unclear. We show herein that mutations of p.P136H and p.P361L impaired their aminoacylation activity, but mutation of p.A170G did not. In addition, previous studies have shown that dopa, which is the most commonly prescribed drug for the treatment of Parkinson’s disease, can be misacylated to dopa-tRNAPhe, which in turn leads to the increased levels of DOPA-containing proteins found in patients treated with this drug. To determine the amino acid specificities of these HsPheRSm mutants, we chose several phenylalanine analogues such as meta-tyrosine and meta-fluoro-phenylalanine as substrates. Our in vivo assays showed that cells possessing HsPheRSm mutants could grow on a selective medium containing these phenylalanine analogues without obvious growth defects. Research is underway to elucidate the relationships between HsPheRSm mutations and misacylation.

    中文摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 圖目錄 Ⅶ 表目錄 Ⅷ 縮寫檢索表 Ⅸ 第一章 緒論 1 1.1  Aminoacyl-tRNA synthetase (aaRS) 的簡介 1 1.1.1 AaRS 的功能 1 1.1.2 AaRS 的分類 2 1.1.3 原核生物與真核生物的aaRS 3 1.2 PheRS 的簡介 3 1.2.1 PheRS 的生化特性 3 1.2.2 真核生物之細胞質與粒線體PheRS的結構 4 1.2.3 人類細胞質 (HsPheRSc) 及粒線體PheRSs (HsPheRSm)與疾病的關聯性 4 1.3 研究目的 6 第二章 材料與方法 7 2.1 菌株、載體及培養基 7 2.1.1 菌株 7 2.1.2 載體 7 2.1.3 培養基 8 2.2 大腸桿菌勝任細胞的製備與轉型作用 10 2.2.1 大腸桿菌勝任細胞的製備 10 2.2.2 大腸桿菌勝任細胞的轉型作用 (transformation) 11 2.3 酵母菌勝任細胞的製備與轉型作用 11 2.3.1 酵母菌勝任細胞的製備 11 2.3.2 酵母菌勝任細胞的轉型作用 12 2.4 質體之選殖 12 2.5 點突變 (site-directed mutagenesis) 13 2.6 酵母菌單套MSF1剔除株 (knockout strain) 的建構 14 2.7 功能性互補分析 (complementation)-測試細胞質功能 15 2.8 功能性互補分析-測試粒線體功能 15 2.9 生長性表現型分析 (growth phenotype)-測試細胞質的生長差異 16 2.10 生長性表現型分析-測試粒線體的生長差異 16 2.11 蛋白質製備 (protein preparation) 16 2.12 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 之 蛋白質分子量分析 18 2.13 西方點墨法 (Western blotting) 19 2.14 大腸桿菌融合蛋白質的表現和純化 20 2.15 細胞外轉錄 (in vitro transcription) 23 2.16 胺醯化作用分析 (aminoacylation) 25 第三章 結果 27 3.1 HsPheRSm突變不影響蛋白質的表現量 27 3.2 HsPheRSm突變P136H及P361L減少胺醯化作用的活性,突變A170G則 無影響 27 3.3 HsPheRSm突變P136H及P361L減弱酵母菌的生長 28 3.4 HsPheRSm突變在酵母菌的生長情形比較 28 3.4.1 錯誤的胺基酸之選擇 28 3.4.2 在酵母菌粒線體的生長情形比較 29 3.4.3 在酵母菌細胞質的生長情形比較 30 第四章 討論 31 4.1 高變異性的突變必須伴隨著高度保守性才能影響HsPheRSm的胺醯化作用 31 4.2 未完全受損的胺醯化作用仍可維持細胞生長 31 4.3 錯誤的胺基酸併入蛋白質與疾病的關聯性仍未確定 32 4.4 未來目標 33 4.4.1 探討HsPheRSm突變與疾病的關聯性 33 4.4.2 探討HsPheRSm突變為何造成錯誤性胺醯化 33 參考文獻 35 圖表 39 附錄 63

    Woese, C. R., Olsen, G. J., Ibba, M., and Söll, D. (2000) Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiology and molecular biology reviews : MMBR 64: 202-236
    Kirillov, S. V., Kemkhadze, K. S., Makarov, E. M., I., M. V., Odintsov, V. B., and Semenkov, Y. P. (1980) Mechanism of codon-anticodon interaction in ribosomes: codon-anticodon interaction of aminoacyl-tRNA at the ribosomal donor site. FEBS letters 120: 221-224
    Murphy, F. V. T., and Ramakrishnan, V. (2004) Structure of a purine-purine wobble base pair in the decoding center of the ribosome. Nature structural and molecular biology 11: 1251-1252
    Schimmel, P. (1987) Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annual review of biochemistry 56: 125-158
    Ogle, J. M., and Ramakrishnan, V. (2005) Structural insights into translational fidelity. Annual review of biochemistry 74: 129-177
    Ling, J., Reynolds, N., and Ibba, M. (2009) Aminoacyl-tRNA synthesis and translational quality control. Annual review of microbiology 63: 61-78
    Cvetesic, N., Perona, J. J., and Gruic-Sovulj, I. (2012) Kinetic partitioning between synthetic and editing pathways in class I aminoacyl-tRNA synthetases occurs at both pre-transfer and post-transfer hydrolytic steps. The Journal of biological chemistry 287: 25381-25394
    Reynolds, N. M., Lazazzera, B. A., and Ibba, M. (2010a) Cellular mechanisms that control mistranslation. Nature reviews. Microbiology 8: 849-856
    Guo, M., and Schimmel, P. (2013) Essential nontranslational functions of tRNA synthetases. Nature chemical biology 9: 145-153
    Guo, M., Schimmel, P., and Yang, X. L. (2010) Functional expansion of human tRNA synthetases achieved by structural inventions. FEBS letters 584: 434-442
    Hausmann, C. D., and Ibba, M. (2008) Aminoacyl-tRNA synthetase complexes: molecular multitasking revealed. FEMS Microbiology Reviews 32: 705-721
    Ibba, M., and Soll, D. (2000) Aminoacyl-tRNA synthesis. Annual review of biochemistry 69: 617-650
    Eriani, G., Delarue, M., Poch, O., Gangloff, J., and Moras, D. (1990) Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347: 203-206
    Arnez, J. G., and Moras, D. (1997) Structural and functional considerations of the aminoacylation reaction. Trends in biochemical sciences 22: 211-216
    Giegé, R., Sissler, M., and Florentz, C. (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic acids research 26: 5017-5035
    Carter, C. W., Jr. (1993) Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annual review of biochemistry 62: 715-748
    Burbaum, J. J., and Schimmel, P. (1991) Structural relationships and the classification of aminoacyl-tRNA synthetases. The Journal of biological chemistry 266: 16965-16968
    Dietrich, A., Weil, J. H., and Maréchal-Drouard, L. (1992) Nuclear-encoded transfer RNAs in plant mitochondria. Annual review of cell biology 8: 115-131
    Cavadini, P., Gakh, O., and Isaya, G. (2002) Protein import and processing reconstituted with isolated rat liver mitochondria and recombinant mitochondrial processing peptidase. Methods 26: 298-306
    Chang, K. J., and Wang, C. C. (2004) Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. The Journal of biological chemistry 279: 13778-13785
    Tang, H. L., Yeh, L. S., Chen, N. K., Ripmaster, T., Schimmel, P., and Wang, C. C. (2004) Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. The Journal of biological chemistry 279: 49656-49663
    Chatton, B., Walter, P., Ebel, J. P., Lacroute, F., and Fasiolo, F. (1988) The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. The Journal of biological chemistry 263: 52-57
    Natsoulis, G., Hilger, F., and Fink, G. R. (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46: 235-243
    Lyubetsky, V. A., Zverkov, O. A., Pirogov, S. A., Rubanov, L. I., and Seliverstov, A. V. (2012) Modeling RNA polymerase interaction in mitochondria of chordates. Biology direct 7: 26
    Tworowski, D., Klipcan, L., Peretz, M., Moor, N., and Safro, M. G. (2015) Universal pathway for posttransfer editing reactions: insights from the crystal structure of TtPheRS with puromycin. Proceedings of the National Academy of Sciences of the United States of America 112: 3967-3972
    Reynolds, N. M., Ling, J., Roy, H., Banerjee, R., Repasky, S. E., Hamel, P., and Ibba, M. (2010b) Cell-specific differences in the requirements for translation quality control. Proceedings of the National Academy of Sciences of the United States of America 107: 4063-4068
    Klipcan, L., Finarov, I., Moor, N., and Safro, M. G. (2010) Structural Aspects of Phenylalanylation and Quality Control in Three Major Forms of Phenylalanyl-tRNA Synthetase. Journal of amino acids 2010: 983503
    Bullard, J. M., Cai, Y. C., Demeler, B., and Spremulli, L. L. (1999) Expression and characterization of a human mitochondrial phenylalanyl-tRNA synthetase. Journal of molecular biology 288: 567-577
    Roy, H., Ling, J., Alfonzo, J., and Ibba, M. (2005) Loss of editing activity during the evolution of mitochondrial phenylalanyl-tRNA synthetase. The Journal of biological chemistry 280: 38186-38192
    Moor, N., Klipcan, L., and Safro, M. G. (2011) Bacterial and eukaryotic phenylalanyl-tRNA synthetases catalyze misaminoacylation of tRNA(Phe) with 3,4-dihydroxy-L-phenylalanine. Chemistry & biology 18: 1221-1229
    Park, S. G., Schimmel, P., and Kim, S. (2008) Aminoacyl tRNA synthetases and their connections to disease. Proceedings of the National Academy of Sciences of the United States of America 105: 11043-11049
    Rodova, M., Ankilova, V., and Safro, M. G. (1999) Human phenylalanyl-tRNA synthetase: cloning, characterization of the deduced amino acid sequences in terms of the structural domains and coordinately regulated expression of the alpha and beta subunits in chronic myeloid leukemia cells. Biochemical and biophysical research communications 255: 765-773
    Lieber, M., Smith, B., Szakal, A., Nelson-Rees, W., and Todaro, G. (1976) A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. International journal of cancer. Journal international du cancer 17: 62-70
    Lu, J., Bergert, M., Walther, A., and Suter, B. (2014) Double-sieving-defective aminoacyl-tRNA synthetase causes protein mistranslation and affects cellular physiology and development. Nature communications 5: 5650
    Elo, J. M., Yadavalli, S. S., Euro, L., Isohanni, P., Gotz, A., Carroll, C. J., Valanne, L., Alkuraya, F. S., Uusimaa, J., Paetau, A., Caruso, E. M., Pihko, H., Ibba, M., Tyynismaa, H., and Suomalainen, A. (2012) Mitochondrial phenylalanyl-tRNA synthetase mutations underlie fatal infantile Alpers encephalopathy. Human molecular genetics 21: 4521-4529
    Almalki, A., Alston, C. L., Parker, A., Simonic, I., Mehta, S. G., He, L., Reza, M., Oliveira, J. M., Lightowlers, R. N., Mcfarland, R., Taylor, R. W., and Chrzanowska-Lightowlers, Z. M. (2014) Mutation of the human mitochondrial phenylalanine-tRNA synthetase causes infantile-onset epilepsy and cytochrome c oxidase deficiency. Biochimica et biophysica acta 1842: 56-64
    Ljungdahl, P. O., and Daignan-Fornier, B. (2012) Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 190: 885-929
    Banerjee, R., Reynolds, N. M., Yadavalli, S. S., Rice, C., Roy, H., Banerjee, P., Alexander, R. W., and Ibba, M. (2011) Mitochondrial aminoacyl-tRNA synthetase single-nucleotide polymorphisms that lead to defects in refolding but not aminoacylation. Journal of molecular biology 410: 280-293
    Antonellis, A., and Green, E. D. (2008) The role of aminoacyl-tRNA synthetases in genetic diseases. Annual review of genomics and human genetics 9: 87-107
    Nangle, L. A., Zhang, W., Xie, W., Yang, X. L., and Schimmel, P. (2007) Charcot-Marie-Tooth disease-associated mutant tRNA synthetases linked to altered dimer interface and neurite distribution defect. Proceedings of the National Academy of Sciences of the United States of America 104: 11239-11244

    QR CODE
    :::