跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡瀚威
Han-Wei Tsai
論文名稱: 凡德瓦異質結構PtSe2/PtTe2之界面交互作用
Interfacial interaction of van der Waals heterostructures, PtSe2/PtTe2
指導教授: 林孟凱
Meng-Kai Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 60
中文關鍵詞: 超高真空分子束磊晶過渡金屬硫化物角解析光電子能譜
相關次數: 點閱:100下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,過渡金屬硫化物(Transition metal dichalcogenide, TMDCs),不論在塊材或
    薄膜尺度下皆有出色的光學及電子特性,而薄膜尺度下的 TMDC 層數依賴能帶結構也
    是被廣泛討論的原因之一。除了塊材和薄膜,值得注意的是,因 TMDC 層跟層之間微
    弱的凡德瓦力,使不同材料構築的 TMDC 異質結構成為可能,這將帶給我們更多前所
    未有的特性。而異質結構中層跟層的接觸面是造成材料性質變化的關鍵,因此我們的
    工作在於研究界面作用對材料能帶結構的影響。我們透過角解析光電子能譜(Angle
    Resolved Photoemission Spectroscopy, ARPES)觀察不同層數 PtSe2/PtTe2異質結構的能帶
    結構演化,改變下層基板的厚度分析基板對於電子態雜化的影響以及電子態雜化在材
    料的範圍。結果表明,PtSe2能帶結構受到 PtTe2基底影響,有著與雙層石墨烯基底不
    同的能帶雜化以及能量位移,並且隨著層數變化 PtTe2的電子態多寡有所變化。除此之
    外,透過改變上層厚度我們也發現,上層加厚的 PtSe2薄膜改變了異質結構中的能譜權
    重,遮蔽了界面的雜化電子態,暗示了異質結構的界面局域性。


    Bulk and thin-film transition metal dichalcogenides (TMDCs) have attracted significant
    interest in the condensed matter physics community due to their remarkable optical and
    electronic properties. Despite the weak van der Waals interaction between layers, TMDC
    heterostructures can exhibit novel physical phenomena arising from the specific composition
    and interfacial interactions of their constituent layers. Understanding the mechanism of
    interlayer coupling is therefore crucial for tuning the electronic properties of these systems.
    In this study, we investigate a model heterostructure composed of PtSe2 and PtTe2 with
    varying thicknesses, using angle-resolved photoemission spectroscopy (ARPES). Our results
    reveal that the electronic band structure of PtSe2 is modified by the underlying PtTe2 substrate
    through electronic hybridization, leading to band renormalization and the emergent band
    features. These interfacial phenomena show a strong dependence on the thickness of the PtTe2
    layer, indicating that the strength of interlayer coupling can be effectively tuned by the
    electronic structure of the substrate. Furthermore, we observe a reduction in the spectral
    weight of the hybridized states with increasing PtSe2 thickness, suggesting that the emergent
    features are localized at the interface.

    中文摘要 i 英文摘要 ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 一、簡介 1 1.1 基本介紹 1 1.2 文獻回顧與研究動機 3 二、儀器工作原理 5 2.1 分子束磊晶 5 2.1.1 超高真空技術 6 2.1.2 蒸鍍槍 10 2.1.3 反射式高能量電子繞射 11 2.2 角解析光電子能譜 14 2.2.1 能帶結構 14 2.2.2 角解析光電子能譜實驗介紹與原理 16 2.2.3 光激發過程-三階模型 18 2.2.4 光激發理論 19 三、樣品資訊 23 3.1 材料介紹 23 3.2 基板製備-雙層石墨烯 25 3.3 薄膜製備-PtTe2、PtSe2、PtSe2/PtTe2異質結構 26 四、實驗結果 28 4.1 PtTe2、PtSe2不同層數的能帶結構量測 28 4.2 改變基底厚度的異質結構能帶量測(1-TL PtSe2/1~5 TL PtTe2) 31 4.3 改變上層厚度的異質結構能帶量測(1~3-TL PtSe2/1、2-TL PtTe2) 34 五、結論 39 參考資料 40

    1. K. S. Novoselov, et al., Two-dimensional gas of massless Dirac fermions in graphene,
    Nature 438, 197 (2005).
    2. J. Horng, et al., Drude conductivity of Dirac fermions in graphene, Phys. Rev. B 83,
    165113 (2011).
    3. K. S. Novoselov, et al., Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. USA 102,
    10451 (2005).
    4. A. Zavabeti, et al., Two-dimensional materials in large-areas: synthesis, properties and
    applications, Nano-Micro Lett. 12, 1 (2020).
    5. I. Meric, et al., Graphene field-effect transistors based on boron–nitride dielectrics, Proc.
    IEEE 101, 1609 (2013).
    6. D. Jariwala, et al., Emerging device applications for semiconducting two-dimensional
    transition metal dichalcogenides, ACS Nano 8, 1102 (2014).
    7. K. Thakar and S. Lodha, Optoelectronic and photonic devices based on transition metal
    dichalcogenides, Mater. Res. Express 7, 014002 (2020).
    8. A. Bolotsky, et al., Two-dimensional materials in biosensing and healthcare: from in vitro
    diagnostics to optogenetics and beyond, ACS Nano 13, 9781 (2019).
    9. F. Xia, et al., Two-dimensional material nanophotonics, Nat. Photonics 8, 899 (2014).
    10. L. Li, et al., Quantum oscillations in a two-dimensional electron gas in black phosphorus - 40 -
    thin films, Nat. Nanotechnol. 10, 608 (2015).
    11. P. Rivera, et al., Valley-polarized exciton dynamics in a 2D semiconductor heterostructure,
    Science 351, 688 (2016).
    12. K. S. Novoselov, et al., 2D materials and van der Waals heterostructures, Science 353,
    aac9439 (2016).
    13. H. S. Lee, et al., MoS₂ nanosheet phototransistors with thickness-modulated optical
    energy gap, Nano Lett. 12, 3695 (2012).
    14. K. F. Mak, et al., Atomically thin MoS₂: a new direct-gap semiconductor, Phys. Rev. Lett.
    105, 136805 (2010).
    15. M. Y. Li, et al., How 2D semiconductors could extend Moore’s law, Nature 567, 169
    (2019).
    16. M. Yan, et al., Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide
    PtTe₂, Nat. Commun. 8, 257 (2017).
    17. K. Zhang, et al., Experimental evidence for type-II Dirac semimetal in PtSe₂, Phys. Rev. B
    96, 125102 (2017).
    18. H. Huang, et al., Type-II Dirac fermions in the PtSe₂ class of transition metal
    dichalcogenides, Phys. Rev. B 94, 121117 (2016).
    19. H. Ma, et al., Controlled Synthesis of Ultrathin PtSe₂ Nanosheets with Thickness‐Tunable
    Electrical and Magnetoelectrical Properties, Adv. Sci. 9, 2103507 (2022). - 41 -
    20. H. Xu, et al., High spin hall conductivity in large‐area type‐II Dirac semimetal PtTe₂, Adv.
    Mater. 32, 2000513 (2020).
    21. J. Sun, et al., Asymmetric Fermi velocity induced chiral magnetotransport anisotropy in
    the type-II Dirac semi-metal PtSe₂, Commun. Phys. 3, 93 (2020).
    22. A. Politano, et al., 3D Dirac plasmons in the type-II Dirac semimetal PtTe₂, Phys. Rev.
    Lett. 121, 086804 (2018).
    23. M. K. Lin, et al., Dimensionality-mediated semimetal-semiconductor transition in
    ultrathin PtTe₂ films, Phys. Rev. Lett. 124, 036402 (2020).
    24. Y. Wang, et al., Monolayer PtSe₂, a new semiconducting transition-metal-dichalcogenide,
    epitaxially grown by direct selenization of Pt, Nano Lett. 15, 4013 (2015).
    25. R. A. B. Villaos, et al., Thickness dependent electronic properties of Pt dichalcogenides,
    npj 2D Mater. Appl. 3, 2 (2019).
    26. J. Li, et al., Layer-dependent band gaps of platinum dichalcogenides, ACS Nano 15,
    13249 (2021).
    27. J H. Jeon, et al., Strain-Enabled Band Structure Engineering in Layered PtSe₂ for Water
    Electrolysis under Ultralow Overpotential, ACS Nano 19, 9107 (2025).
    28. C. Yim, et al., High-performance hybrid electronic devices from layered PtSe₂ films
    grown at low temperature, ACS Nano 10, 9550 (2016).
    29. B. Cao, et al., Recent progress in van der Waals 2D PtSe₂, Nanotechnology 32, 412001 - 42 -
    (2021).
    30. M. S. Shawkat, et al., Scalable van der Waals two-dimensional PtTe₂ layers integrated
    onto silicon for efficient near-to-mid infrared photodetection, ACS Appl. Mater. Interfaces
    13, 15542 (2021)..
    31. G. Wang, et al., Layered PtSe₂ for sensing, photonic, and (opto‐) electronic applications,
    Adv. Mater. 33, 2004070 (2021).
    32. A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499, 419 (2013).
    33. A. Chaves, et al., Bandgap engineering of two-dimensional semiconductor materials, npj
    2D Mater. Appl. 4, 29 (2020).
    34. R. Wu, et al., Synthesis, modulation, and application of two-dimensional TMD
    heterostructures, Chem. Rev. 124, 10112 (2024).
    35. H. Wang, et al., Two-dimensional heterostructures: fabrication, characterization, and
    application, Nanoscale 6, 12250 (2014).
    36. A. Ciarrocchi, et al., Excitonic devices with van der Waals heterostructures: valleytronics
    meets twistronics, Nat. Rev. Mater. 7, 449 (2022).
    37. G. Iannaccone, et al., Quantum engineering of transistors based on 2D materials
    heterostructures, Nat. Nanotechnol. 13, 183 (2018).
    38. H. Lee, et al., Layer-dependent interfacial transport and optoelectrical properties of MoS₂
    on ultraflat metals, ACS Appl. Mater. Interfaces 11, 31543 (2019). - 43 -
    39. Y. Guo and J. Robertson, Band engineering in transition metal dichalcogenides: Stacked
    versus lateral heterostructures, Appl. Phys. Lett. 108, 233104 (2016).
    40. J. P. Bange, et al., Ultrafast dynamics of bright and dark excitons in monolayer WSe₂ and
    heterobilayer WSe₂/MoS₂, 2D Mater. 10, 035039 (2023).
    41. D. Chen, et al., Tuning moiré excitons and correlated electronic states through layer
    degree of freedom, Nat. Commun. 13, 4810 (2022).
    42. K. Gu, et al., Two-dimensional hybrid layered materials: strain engineering on the band
    structure of MoS₂/WSe₂ hetero-multilayers, Nanotechnology 28, 365202 (2017).
    43. H. K. Pal, et al., Emergent geometric frustration and flat band in moiré bilayer graphene,
    Phys. Rev. Lett. 123, 186402 (2019).
    44. L. Balents, et al., Superconductivity and strong correlations in moiré flat bands, Nat. Phys.
    16, 725 (2020).
    45. T. Yilmaz, et al., Emergent flat band electronic structure in a VSe₂/Bi₂Se₃ heterostructure,
    Commun. Mater. 2, 11 (2021).
    46. L. Fu and C. L. Kane, Superconducting proximity effect and Majorana fermions at the
    surface of a topological insulator, Phys. Rev. Lett. 100, 096407 (2008).
    47. T. Shoman, et al., Topological proximity effect in a topological insulator hybrid, Nat.
    Commun. 6, 6547 (2015).
    48. C. X. Trang, et al., Conversion of a conventional superconductor into a topological - 44 -
    superconductor by topological proximity effect, Nat. Commun. 11, 159 (2020).
    49. J. Li, et al., A van der Waals heterostructure with an electronically textured moiré pattern:
    PtSe₂/PtTe₂, ACS Nano 17, 5913 (2023).
    50. H. M. Hill, et al., Band alignment in MoS₂/WS₂ transition metal dichalcogenide
    heterostructures probed by scanning tunneling microscopy and spectroscopy, Nano Lett.
    16, 4831 (2016).
    51. F. H. Davies, et al., Band alignment of transition metal dichalcogenide heterostructures,
    Phys. Rev. B 103, 045417 (2021).
    52. H. Coy Diaz, et al., Direct observation of interlayer hybridization and Dirac relativistic
    carriers in graphene/MoS₂ van der Waals heterostructures, Nano Lett. 15, 1135 (2015).
    53. N. R. Wilson, et al., Determination of band offsets, hybridization, and exciton binding in
    2D semiconductor heterostructures, Sci. Adv. 3, e1601832 (2017).
    54. M. K. Lin, et al., Coherent electronic band structure of TiTe₂/TiSe₂ moiré bilayer, ACS
    Nano 15, 3359 (2021).
    55. M. K. Lin, et al., Charge instability in single-layer TiTe₂ mediated by van der Waals
    bonding to substrates, Phys. Rev. Lett. 125, 176405 (2020).
    56. J. A. Hlevyack, et al., Emergence of topological and trivial interface states in VSe₂ films
    coupled to Bi₂Se₃, Phys. Rev. B 105, 195119 (2022). - 45 -
    57. L. Morresi, Silicon based thin film solar cells Molecular beam epitaxy (MBE), Bentham
    Science Publishers, 81 (2013).
    58. R. Chang, Physical chemistry for the biosciences, University Science Books. (2005)
    59. Leybold 官方網站,https://content.leybold.com/en/knowledge/what-is-knudsen-flow
    60. PFEIFFER官方網站,https://www.pfeiffer-vacuum.com/global/en/knowledge/vacuum
    technology/introduction/fundamentals
    61. Lüth, H., Solid surfaces, interfaces and thin films, Berlin: Springer. (2001).
    62. PFEIFFER官方網站,https://www.pfeiffer-vacuum.com/global/en/knowledge/vacuum
    technology/vacuum-generation/roots-vacuum-pumps
    63. K. Sun, et al., Structural optimization and flow field analysis of turbomolecular pump
    based on a new performance prediction algorithm, Sci. Rep. 14, 12735 (2024).
    64. SPECS官方網站 https://www.specs-group.com/nc/specs/products/detail/ebe-4
    configurable/#
    65. M. Henini, Molecular beam epitaxy from research to mass production, Elsevier Science.
    (1996).
    66. C. Kittel, & P. McEuen, Introduction to solid state physics, John Wiley & Sons (2018)
    67. Klein, Jürgen, Epitaktische Heterostrukturen aus dotierten Manganaten, Universität zu
    Köln, PhD thesis, (2001).
    68. M. P. Seah & W. A. Dench., Quantitative electron spectroscopy of surfaces: A standard - 46 -
    data base for electron inelastic mean free paths in solids, John Wiley & Sons (1979)
    69. B. Lv, T. Qian & H. Ding, Angle-resolved photoemission spectroscopy and its application
    to topological materials, Nat. Rev. Phys. 1, 609 (2019).
    70. S. Hüfner, Photoelectron spectroscopy: principles and applications, Springer Science &
    Business Media (2013)
    71. M. D. Nurunnabi & J. McCarthy, Biomedical Applications of Graphene and 2D
    Nanomaterials, Elsevier (2019)
    72. G. R. Yazdi, et al., Growth of large area monolayer graphene on 3C-SiC and a comparison
    with other SiC polytypes, Carbon 57, 477 (2013).
    73. G. F. Sun, et al., Si diffusion path for pit-free graphene growth on SiC (0001), Phys. Rev.
    B 84, 195455 (2011).
    74. U. Starke & C. Riedl, Epitaxial graphene on SiC (0001) and: from surface reconstructions
    to carbon electronics, J. Phys.: Condens. Matter 21, 134016 (2009).
    75. Q. Wang, et al., Large-scale uniform bilayer graphene prepared by vacuum graphitization
    of 6H-SiC (0001) substrates, J. Phys.: Condens. Matter 25, 095002 (2013).
    76. A. Winkelmann, et al., Richter, Electron diffraction methods for the analysis of silicon
    carbide surfaces and the controlled growth of polytype heterostructures, J. Phys.: Condens.
    Matter 16, S1555 (2004).
    77. L. A. Walsh, R. Addou, R. M. Wallace, and C. L. Hinkle, Molecular beam epitaxy of - 47 -
    transition metal dichalcogenides, in Molecular Beam Epitaxy, Elsevier (2018).
    78. T. Ohta, et al., Controlling the electronic structure of bilayer graphene, Science 313, 951
    (2006).
    79. C. E. Johnson, Topics in Applied Physics Vol 26: Photoemission in Solids I–General
    Principles, Physics Bulletin 30, 534 (1979).
    80. J. C. Fuggle & N. Mårtensson, Core-Level Binding Energies in Metals, J. Electron
    Spectrosc. Reat. Phenom. 21, 275 (1980)

    QR CODE
    :::