跳到主要內容

簡易檢索 / 詳目顯示

研究生: 杜明賢
Ming-Hsien Tu
論文名稱: 標準元件庫雜訊特性化及電源雜訊抑制電路設計
Standard Cell Library Noise Characterization and Power Noise Suppression Circuit Design
指導教授: 周世傑
Shyh-Jye Jou
劉建男
Chien-Nan Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 94
語文別: 英文
論文頁數: 149
中文關鍵詞: 標準元件庫雜訊特性化
外文關鍵詞: characterization, standard cell library, noise
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    隨著半導體製造技術的進步,最小特徵尺寸持續降低,而且電路密度逐漸增加。在這個同時,增加的時脈速度要求這些電路有更快的訊號轉換速率。如此,在今天的高速電路中,雜訊產生變得愈來愈嚴重。然而,供應電源電壓的減少代表著更低的電晶體臨界電壓。因此,電路的雜訊邊界變得更小。它會造成大量的訊雜比降低,不管是在數位或是混合訊號電路。因此,電路效能將被雜訊所限制。
    在這個論文,我們提供一個能察覺雜訊的標準元件庫。有兩個主要的部份在這個目標,雜訊特性化與抑制雜訊元件設計。在雜訊特性化方面,我們介紹特性化交插耦合雜訊的程序與使用CLKINVX1與NAND2X1來當成特性化例子。我們也討論特性化同時轉換雜訊的方法與呈現一些初步的想法。
    在雜訊抑制元件設計方面,我們實現了被動抑制電源雜訊元件,去耦合電容,與一個主動抑制電源雜訊模組。它們可以直接抑制在設計者電路中所發生的電源雜訊。模擬結果顯示,主動抑制電源電路能降低負的電源雜訊峰值達33%,降低正的電源雜訊峰值達44%。最後我們將主動抑制電源雜訊電路與晶片上抖動量測電路做結合。這個結合電路可以讓我們直接觀察主動抑制電源雜訊電路所造成的改善。


    Abstract
    With advances in semiconductor fabrication technology, the minimum feature size continues to decrease and the circuit density increases gradually. At the same time, increasing clock speeds demands these circuits to switch at faster rates. Thus, noise generation becomes more and more serious in today’s high-speed circuits. Moreover, decreasing power supply voltages dictate lower transistor threshold voltage. Therefore, noise margins of circuits become smaller. It causes a significantly signal-to-noise ratio reduction for both digital and mixed-signal/analog circuits. Therefore, the circuit performance will be limited by noise.
    In this thesis, we provide a noise-aware standard cell library. There are two major parts in the subject, noise characterization and noise suppression cell design. On noise characterization, we introduce the procedure to characterize the noise behavior and use CLKINVX1 and NAND2X1 as a characterization example. We also discuss the way to characterize simultaneous switching noise and propose some preliminary ideas.
    On noise suppression cell design, we implement the passive power supply noise (PSN) suppression cell, decoupling capacitance, and an active PSN suppression module. They can be used to suppress PSN occurring in design’s circuit. The simulation results appeal that the active PSN suppression circuit can have 33% reduction for negative PSN peak and 44% reduction for positive PSN peak. Finally, we combine the active PSN suppression circuit with an on-chip bounce measurement circuit. This combined circuit can let us observe the improvement due to the active PSN suppression circuit directly.

    Contents Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Introduction 2 1.2.1 Standard Cell Library 2 1.2.2 Noise Characterization 3 1.2.3 Low-Noise Cells and Anti-Noise Modules 4 1.2.4 On-Chip measurement Circuit 5 1.3 Thesis Organization 6 Chapter 2 Cross-Coupling Noise Model and Characterization Flow 7 2.1 Introduction to Cross-Coupling Noise 7 2.2 Cross-Coupling Noise Model in Liberty Format 9 2.2.1 Noise Calculation 10 2.2.2 Noise Immunity 10 2.2.3 Noise Propagation 12 2.3 Cross-Coupling Noise Characterization 13 2.3.1 Cross-Coupling Noise Characterization Flow 13 2.3.2 Generation of Cross-Coupling Noise Glitches 14 2.3.3 Weibull Function 15 2.3.4 Noise Calculation Characterization 23 2.3.5 Noise Immunity Characterization 27 2.3.6 Noise Propagation Characterization 31 2.4 Summary 33 Chapter 3 Simultaneous Switching Noise Model and Characterization 34 3.1 Introduce to Simultaneous Switching Noise 34 3.1.1 Causes of Simultaneous Switching Noise 34 3.1.2 Bounce Behavior of SSN 36 3.1.3 Negative Feedback 39 3.2 Power Supply Noise Estimation Methods 40 3.2.1 Dynamic Estimation Method 41 3.2.2 Static Estimation Method 42 3.2.3 Current Waveform Characterization 45 3.3 The Effects of SSN on Propagation Delay 49 3.3.1 Propagation Delay 49 3.3.2 The characteristics of a SSN Waveform 50 3.3.3 The Characterization of Tp 52 3.4 Summary 54 Chapter 4 Noise-Aware Cell Library 55 4.1 Cross-Coupling Noise and SSN Suppression Methods 55 4.1.1 Cross-Coupling Noise Suppression Methods 55 4.1.2 SSN Suppression Methods 57 4.2 Cell Adjustment for SSN Suppression 59 4.2.1 Sizing Experiment 59 4.2.2 Mixed-Vt Experiment 62 4.3 Coupling Noise Characterization Example 65 4.3.1 Noise Calculation - I-V Curve 65 4.3.2 Noise Propagation 71 4.3.3 Noise Immunity 76 4.4 Passive PSN Suppression Cell - Decoupling Capacitance 80 4.5 Active PSN Suppression Module Design 84 4.5.1 Background and Related Researches 84 4.5.2 Active PSN Suppression Circuit 87 4.5.3 Design and Simulation Results 92 4.5.4 Combine with On-Chip Measurement Circuit 96 4.6 Summary 100 Chapter 5 Conclusions 101 References 103 Appendix A – The Complete Cross-Coupling Noise Characterization Example of CLKINVX1 and NAND2X1 105

    References
    [1] W. Roethig, “Library Characterization and Modeling for 130 nm and 90 nm SOC Design,” proceedings of the IEEE International SOC Conference, pp. 383–386, Sep. 2003.
    [2] R. Hegde and N. R. Shanbhag, “Towards Achieving Energy-Efficiency in Presence of Deep Submicron Noise,” IEEE Trans. on VLSI Systems, vol. 8, no. 4, pp. 379-391, Aug. 2000.
    [3] PrimeTime® SI User Guide, Version W-2004.12, December 2004
    [4] Library Complier User Guide: Modeling Timing and Power Technology Libraries, Version W-2004.12, December 2004
    [5] A. Kasnavi, J. W. Wang, M. Shahram, and J. Zejda., “Analytical modeling of crosstalk noise waveforms using weibull function,” in IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, Nov. 7-11 2004, , pp. 141-146
    [6] Y. S. Chang, S. K. Gupta, M. A. Breuer, “Analysis of ground bounce in deep sub-micron circuits,” VLSI Test Symposium, 1997., 15th IEEE, Apr. 27 1997, pp. 110 - 116
    [7] Y. M. Jiang, K. T. Cheng, A. C. Deng, “Estimation of Maximum Power Supply Noise for Deep Sub-Micron Designs,” in Proc. Int. Symp. on Low Power Electronics and Design, Aug. 10-12, 1998, pp. 233-238
    [8] T. Murayama, K. Ogawa, H. Yamaguchi, “Estimation of peak current through CMOS VLSI circuit supply lines,” Design Automation Conference, vol.1, Jan. 18-21 1999, pp. 295 – 298
    [9] Y. J. Wang, “Nanometer CMOS on Chip Serial Link Transmitter”, Master dissertation, Dept. of Electrical Engineering, N.C.U., Taiwan, ROC, July 2005
    [10] A. Solomatnikov, D. Somasekhar, N. Sirisantana, and K. Roy., “Skewed CMOS: Noise-tolerant high-performance low-power static circuit family,” IEEE Trans. VLSI Syst., vol. 10, issue: 4, pp. 469-476, Aug. 2002.
    [11] L. McMurchie, S. Kio, G. Yee, T. Thorp, and C. Sechen, “Output prediction logic: a high-performance CMOS design technique,” Proc. Intl. Conf. Computer Design, 2000, pp. 247-254
    [12] P. Larsson, “Resonance and Damping in CMOS Circuits with On-Chip Decoupling Capacitance,” IEEE Trans. on CAS-I, pp. 849-858, Aug. 1998
    [13] S. J. Jou, S. H. Kuo, J. T. Chiu and V. Lin, “Low Switching Noise and Load Adaptive Output Buffer Design Techniques,” IEEE Journal of Solid-State Circuits, vol.36, no.8, pp.1239-1249 (SCI, EI), Aug. 2001
    [14] N. R. Shanbhag, ”Reliable and efficient system-on-chip design”, IEEE Computer,. vol. 3, issue: 3, pp. 42-50, March 2004.
    [15] Y. W. Chiu, “Standard Cell Library Characterization and Mixed-Threshold Voltage Cell Library Design”, Master dissertation, Dept. of Electrical Engineering, N.C.U., Taiwan, ROC, July 2006
    [16] N. H. E. Weste, D. Harris, ”CMOS VLSI Design,” 3rd ed., New York: Addison Wesley, 2005, pp. 773-775
    [17] W. Dally and J. Poulton, “Digital Systems Engineering,” Cambridge, UK: Cambridge University Press, 1998
    [18] P. Larsson, “Parasitic resistance in an MOS transistor used a on-chip decoupling capacitance,” JSSC, vol. 29, no. 6, June 1994, pp. 723-726
    [19] G. Ji, T. Arabi, G. Taylor., et. al., “Design and Validation of a Power Supply Noise Reduction Technique,” Electrical Performance of Electronic Packaging, Oct. 2003
    [20] T. J. Gabara, W. C. Fischer, J. Harrington, W. W. Troutman, “Forming damped LRC parasitic circuits in simultaneously switched CMOS output buffers,” IEEE Journal of Solid State Circuits, vol. 32, no.3, pp. 407-418, Mar. 1997
    [21] G. Keskin, X. Li and L. Pileggi, “Active Suppression of Power Supply Noise,” published in CICC 2006
    [22] M. L. Yu, “Analysis, Design and Measurement of Low-Energy Clocked Storage Element”, Master dissertation, Dept. of Electrical Engineering, N.C.U., Taiwan, ROC, Jan. 2006

    QR CODE
    :::