| 研究生: |
張伯墉 Bo-Yong Jhang |
|---|---|
| 論文名稱: |
適應性自我學習粒子群演算法 Adaptive Self-Learning Particle Swarm Optimization |
| 指導教授: |
莊堯棠
Yau-Tarng Juang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 粒子群演算法 、資料分群 、K-means演算法 、群集分析 |
| 外文關鍵詞: | particle swarm optimization, data clustering, K-means clustering, cluster analysis |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於本篇論文中,我們提出一種改良式的粒子群演算法,名稱為適應性自我學習粒子群演算法(Adaptive Self-Learning Particle Swarm Optimization, ASLPSO),並將其應用於資料分群之問題。本文利用自我學習機制,讓粒子能夠向表現比他更好的其他粒子學習,以獲取有用的資訊,並再透過動態的模式轉換策略改進粒子的搜尋能力,使粒子能在演算法疊代過程的不同階段,轉換其搜尋模式,以提高找到全域最佳解的可能性。我們最後使用16種測試函數進行模擬,與其他已提出的不同改良式粒子群演算法做比較,實驗的結果表示,本文所提出的改良方法可以在大部分的測試函數中有著較佳的表現。最後並將本文的改良式演算法運用在資料分群的問題上,我們可以在某些性能指標上得到更好的結果,但也有較差的部分,這顯示本文的方法仍有進一步改善的可能。
This thesis proposes a new particle swarm optimization (PSO) called Adaptive Self-Learning Particle Swarm Optimization (ASLPSO), and applies it to the classification problem. A self-learning method is introduced in the ASLPSO that every particle randomly selects its learning object among the better particles to acquire useful information. We also designs a dynamic transition strategy to improve the searching approach of particles during the iterations. In the experiments, the performance of the proposed ASLPSO is compared to several improved PSO’s in the literature by testing sixteen benchmark functions. The experimental results show that the proposed algorithm performs better on most of the functions. At last, the ASLPSO is applied to a classification problem. In our experiments, many classification results are better, but not all. To be more precisely, the ASLPSO is supposed to be refined in some ways.
[1] J. Kennedy and R. C. Eberhart, “Particle Swarm Optimization,” In Proceedings of IEEE International Conference on Neural Networks,” Vol. IV, pp. 1942−1948, 1995.
[2] W. D. Chang and S. P. Shih, “PID controller design nonlinear systems using an improved particle swarm optimization approach,” Communication Nonlinear Science and Numerical Simulation, Vol. 15, pp. 3632-3639, 2010.
[3] R. A. Krohling and L. S. Coelho, “Coevolutionary Particle Swarm Optimization Using Gaussian Distribution for Solving Constrained Optimization Problem,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , Vol. 36, No. 6, pp. 1407-1416, 2006.
[4] G. Zeng and Y. Jiang, “A Modified PSO Algorithm with Line Search,” In Proceedings of 2010 International Conference on Computational Intelligence and Software Engineering, pp. 1-4, 2010.
[5] H. Babaee and A. Khosravi, “An Improve PSO Based Hybrid Algorithms,” In Proceedings of 2011 International Conference on Management and Service Science, pp. 1-5, 2011.
[6] S. Y. Ho, H. S. Lin, W. H. Liauh, and S. J. Ho, “OPSO: Orthogonal particle swarm optimization and its application to task assignment problems,” IEEE Transactions on Man and Cybernetics, Part A: Systems and Humans, Vol. 38, No. 2, pp. 288-298, 2008.
[7] Y. Shi and R. C. Eberhart, “Evolutionary Programming VII, Parameter Selection in Particle Swarm Optimization,” Springer Berlin Heidelberg, Vol. 1447, pp. 591–600, 1998.
[8] M. Clerc, “The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization,” In Proceedings of the Congress on Evolutionary Computation, Vol. 3, pp. 1951−1957, 1999.
[9] M. Clerc and J. Kennedy, “The Particle Swarm—Explosion, Stability, and Convergence in a Multidimensional Complex Space,” IEEE Transactions on Evolutionary Computation, Vol. 6, No. 1, pp. 58-73, 2002.
[10] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients,” IEEE Transactions On Evolutionary Computation, pp. 240-255, 2004.
[11] N. M. Kwok, D. K. Liu, K. C. Tan, and Q. P. Ha, “An Empirical Study on the Settings of Control Coefficients in Particle Swarm Optimization,” In Proceedings of IEEE Congress on Evolutionary Computation, pp. 823-830, 2006.
[12] J. Wei, L. Guangbin and L. Dong, “Elite Particle Swarm Optimization with Mutation,” In Proceedings of 2008 Asia Simulation Conference-7th International Conference on System Simulation and Scientific Computing, pp. 800-803, 2008.
[13] Y. -T Juang, S. -L. Tung, and H. -C. Chiu, “Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions,” International Journal of Information Sciences, Vol. 181, pp. 4539-4549, 2011.
[14] M. R. Tanweer, S. Suresh, and N. Sundararajan, “Self regulating particle swarm optimization algorithm,” International Journal of Information Sciences, pp. 182-202, 2015.
[15] Y. Shi and R. C. Eberhart, “Particle Swarm Optimization:Development, Applications and Resource,” In Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 1, pp. 81-86, 2001.
[16] 吳讚展,「自調整非線性慣性權重粒子群演算法」,桃園市:國立中央大學,碩士論文,民國101年。
[17] Y. Shi and R. C. Eberhart, “Empirical Study of Particle Swarm Optimization,” In Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 3, pp. 1945-1950, 1999.
[18] I. C. Trelea, “The particle swarm optimization algorithm: convergence analysis and parameter selection,” Elsevier Science B.V., Vol. 85, pp. 317-325, 2003.
[19] J. Kennedy, R. C. Eberhart, and Y. Shi, “Swarm intelligence,” Morgan Kaufmann Publishers, San Francisco, 2001.
[20] T. -H Kim, I. Maruta, and T. Sugie, “Robust PID controller tuning based on the constrained particles swarm optimization,” Automatica, Vol. 44, no. 4, pp.1104-1110, 2008.
[21] A. W. Mohemmed, Z. Mengjie, and N. C. Sahoo, “A new particle swarm optimization based algorithm for solving short-paths tree problems,” In Proceedings of IEEE Congress on Evolutionary Computation, pp. 3221-3225, 2007.
[22] J. P. Papa, L. M. G. Fonseca, and L. A. S. de Carvalho, “Projections onto convex sets through particle swarm optimization and its application for remote sensing image restoration,” Pattern Recognition Letters. Vol. 31, pp. 1876-1886, 2010.
[23] 米勒(Peter Miller),林俊宏譯,《群的智慧:向螞蟻、蜜蜂、飛鳥學習組織運作技巧》(The smart swarm: how understanding flocks, schools and colonies can make us better at communicating, decision making, and getting things done),臺北市:天下遠見,2010。
[24] W. H. Lim, “Particle swarm optimization with adaptive time-varying Topology connectivity,” Applied Soft Computing , Vol. 24, pp. 623-642, 2014.
[25] J. Kennedy and R. Eberhart, “The particle swarm optimization: Social adaptation of knowledge,” In Proceedings of the International conference on Evolutionary Computation, pp. 303-308, 1997.
[26] W. H. Lim, “Particle swarm optimization with increasing topology connectivity,” Engineering Applications of Article Intelligence, Vol. 27, pp. 80-102, 2014.
[27] D. Chen, F. Zou, Z. Li, J. Wang, and S. Li, “An improved teaching-learning-based optimization algorithm for solving global optimization problem,” International Journal of Information Sciences, Vol. 297, pp. 179-190, 2015.
[28] R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle swarm:simpler, maybe better,” IEEE Transactions on Evolutionary Computation, Vol. 8, pp. 204-210, 2004.
[29] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. -P. Chen, A. Auger, and S. Tiwari, “Problem definitions and evaluation criteria for the CEC2005 special session on real-parameter optimization,” Technical report of Nanyang Technological University, 2005.
[30] N. Iwasaki, K. Yasuda, and G. Ueno, “Dynamic parameter tuning of particle swarm optimization,” IEEE Transactions on Electrical and Electronic Engineering, pp. 353-363, 2006.
[31] M. A. Montes de Oca, J. Pena, T. Stutzle, C. Pinciroli, and M. Dorigo, “Heterogeneous particle swarm optimizers,” In Proceedings of IEEE Congress on Evolutionary Computation, pp. 698–705, 2009.
[32] M. Pant, T. Radha, and V. P. Singh, “A New Particle Swarm Optimization with Quadratic Interpolation,” In Proceedings of International Conference on Computational Intelligence and Multimedia Applications, pp. 55-60, 2007.
[33] K. E. Parsopoulos and M. N. Vrahatis, “UPSO: a unified particle swarm optimization scheme,” In Lecture series on Computer and Computational Sciences, Vol. 1, pp. 868-873, 2004.
[34] J. J. Liang, and P. N. Suganthan, “Dynamic multi-swarm particle swarm optimizer,” In Proceedings of IEEE on Swarm Intelligence Symposium, pp. 124-129, 2005
[35] 陳珈妤,「快速平衡粒子群最佳化方法」,桃園市:國立中央大學,碩士論文,民國100年。
[36] 蔡憲文,「以時變學習因子策略改良粒子群演算法」,桃園市:國立中央大學,碩士論文,民國99年。
[37] A. Chatterjee and P. Siarry, “Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization,” Computers and Operations Research, Vol. 33, No. 3, pp. 859-871, 2004.
[38] 李憲昌,「維度經驗重心分享粒子群演算法」,桃園市:國立中央大學,碩士論文,民國102年。
[39] 顏淯翔,「改良式粒子群方法之影像追蹤系統應用」,桃園市:國立中央大學,碩士論文,民國103年。
[40] 王鈺潔,「自適應解分享粒子群演算法及其在螺旋電感最佳化設計之應用」,桃園市:國立中央大學,碩士論文,民國104年。
[41] M. R. Anderberg, “Cluster Analysis far Application,” Academic Press, New York, 1973.
[42] J. Han and M. Kamber, “Data Mining: Concepts and Techniques,” Morgan Kaufmann, 2000.
[43] K. Cios, W. Pedrycs, and R. Swiniarski, “Data Mining – Methods for Knowledge Discovery,” Kluwer Academic Publishers, 1998.
[44] M. Omran, A. Salman, and A. P. Engelbrecht, “Image Classification using Particle Swarm Optimization,” In Proceedings of the Conference on Simulated Evolution and Learning, pp. 370-374, 2002.
[45] J. B. MacQueen, “Some methods for classification and analysis of multivariate observations,” In: Proceedings of the Fifth Berkeley Symp. Math. Stat. Prob., pp. 281-297, 1967.
[46] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM Computing Surveys, pp. 264-323, 1999.
[47] X. Cui and T. E. Potok, “Document Clustering Analysis Based on Hybrid PSO+K-means Algorithm,” Journal of Computer Sciences (Special Issue), pp. 27-33, 2005.
[48] 楊正宏、蕭智仁和莊麗月,K-means結合混沌PSO應用於資料分群問題,台北市:ICIM2009 第二十屆國際資訊管理學術研討會,pp. 218-227,2009。
[49] D. W. van der Merwe, and A. P. Engelhrecht, “Data Clustering using Particle Swarm Optimization,” In Proceedings of the IEEE Congress on Evolutionary Computation, pp. 215-220, 2003.
[50] A. Abraham, S. Das, and S. Roy, “Swarm Intelligence Algorithms for Data Clustering,” In Soft Computing for Knowledge Discovery and Data Mining, pp. 279-313, 2008.