| 研究生: |
邱瑞仙 Jui-hsien Chiu |
|---|---|
| 論文名稱: |
桃園地區空氣污染物濃度相關性及地理分布 Statistics analysis and spatial homogeneity of air quality in Taoyuan County |
| 指導教授: |
李崇德
Chung-Te Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所在職專班 Executive Master of Environmental Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 桃園縣空氣品質 、統計分析 、監測站空間分布同質性 |
| 外文關鍵詞: | statistics analysis, spatial homogeneity of monitoring station, air quality in Taoyuan County |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以環保署設於桃園縣的空氣品質監測站為評估對象,分析民國93年至94年六個自動空氣品質監測站的懸浮微粒、臭氧、二氧化硫、一氧化碳、氮氧化物各污染物資料,藉由統計分析的方式,解析各監測站測值的時空分布特性。
以Pearson相關係數矩陣分析桃園縣空氣品質測站與污染物濃度的相關性,結果顯示所有測站懸浮微粒濃度和臭氧濃度受到相同污染型態或擴散因子的影響。五權和中壢測站在二氧化硫相關性高,主要是測站污染物排放源或排放時間型態相似。一氧化碳各測站間相關性高,但中壢交通測站與其他各站相關性較低,可能是中壢測站受到車輛排放直接影響大,其他測站則是受到經大氣環境混合的影響。二氧化氮及氮氧化物測站間相關性高的因素為空間傳輸分布上相似。
本文以集群分析方法探討同一個污染物在測站空間分布的範圍,桃園和中壢測站在懸浮微粒濃度空間分布具有ㄧ致性。龍潭、觀音、大園和五權四測站在臭氧濃度相近,二氧化硫則以五權、中壢、大園和龍潭四測站濃度接近,可能是受到6公里內紡織、印染業等固定污染源排放硫氧化物的影響。在氮氧化物的空間分布中,中壢測站與其他各測站最不一致,顯示受到車輛排放直接影響大,這種現象在一氧化碳濃度空間分布也有相同的情形。
本文以各監測站污染物進行探討測站分布的主成分及轉軸分析,懸浮微粒只有一個主成分,顯示桃園縣的微粒濃度受到相同污染型態或擴散因子的影響。中壢測站與其他測站臭氧分布型態較為不同。大園、中壢和桃園測站和其他測站的二氧化硫來源有些不同。大園和觀音測站與其他測站的一氧化氮來源不同,中壢測站與其他測站的二氧化氮來源不同,氮氧化物則只顯示一個主成分,而且所有測站都有中高度權重,可說明所有測站的氮氧化物都來自類似來源。ㄧ氧化碳只顯示一個主成份,但中壢測站較其他測站權重小。
由污染物濃度與環境條件進行主成分分析後得到,發現影響桃園地區空氣品質變化的第一主成分為二氧化氮、一氧化碳、臭氧及風速,第二主成分為二氧化硫、懸浮微粒及溫度。第一主成分顯示車輛排放廢氣的影響,第二主成分主要顯示燃燒化石燃料的影響,可能包含本地和跨境傳輸來源。
本文以相關性分析、集群分析和主成分分析三種方法分析桃園縣各污染物濃度的相近程度,顯示懸浮微粒以相關性分析和主成分分析較接近。臭氧則以集群分析和主成分分析方法較為接近;相同分析方法結果也出現在二氧化氮及一氧化碳。二氧化硫的空間傳輸分布結果主要以相關性分析和集群分析方法較為接近。
This study adopts data from six automated air-quality monitoring stations operated by Environmental Protection Administration (EPA) in Taoyuan County. The analyzed data include various pollutants such as suspended particulate matter (PM10), ozone (O3), sulfur dioxide (SO2), carbon monoxide (CO), and nitrogen oxides (NOx) dated from 2004 to 2005. The objective of this study is to resolve temporal and spatial characteristics of the monitoring stations through various statistical methods.
The correlation between air-quality monitoring stations in Taoyuan County and pollutant concentrations as determined by Pearson Correlation Coefficient matrix (Pearson) indicates that PM10 and O3 from all stations are affected by the same pollution types or dispersion factors. Owing to similar pollution emissions sources or emissions temporal pattern, the concentrations of SO2 from Wuchuan and Jhongli stations are highly correlated. When it comes to CO, the correlations among all stations are high except for Jhongli traffic station. This could possibly be due to direct influence by the exhaust from motor vehicles, while other stations are affected by a well-mixed atmosphere. The correlations of nitrogen dioxide (NO2) and NOx are high among stations due to the resemblance of spatial transport.
Cluster analysis is applied in this study to explore the spatial distribution of a pollutant in different monitoring stations. The PM10 spatial distribution is close for Taoyuan and Jhongli stations. Longtan, Guanyin, Dayuan, and Wuchuan stations all demonstrate they are consistent in O3 level within a reasonable difference. Meanwhile, SO2 concentration reveals a coherence among Wuchuan, Jhongli, Dayuan, and Longtan stations, which might be attributed to sulfur oxides emissions from textile and printing plants within 6 kilometers of the stations. Jhongli monitoring station is distinctly different from others on the spatial distribution of NOx, which shows the direct impact from motor vehicles’ exhaust. The situation is similar for the spatial distribution of CO concentration.
Results from principal component analysis (PCA) with Varimax rotation for pollutants from each monitoring station are as follows. PM10 is found to result in only one major component which implies particulate matter in Taoyuan County is affected by the same pollution types or dispersion factors. O3 distribution is different in Jhongli than others. Sources of SO2 in Dayuan, Jhongli, and Taoyuan stations are somewhat different from other stations. Dayuan and Guanyin stations distinguish themself from others on nitric dioxide (NO) sources, while Jhongli is different from others in NO2. In the meantime, NOx concentrations show only one single component with medium-to-high weightings in all monitoring stations, which illustrating NOx come from the same sources wherever the station is. Although all stations are also grouped in one component for CO, Jhongli monitoring station is rather low weighted in comparison with other monitoring stations.
The PCA is also applied to all Taoyuan stations for various pollutants and environmental factors. The first component is composed of NO2, CO, O3 and wind speed in Taoyuan. It indicates that vehicle exhaust has a significant influence on Taoyuan’s air quality. The second component is associated with SO2 PM10, and temperature, which means fossil fuel burning from both local and cross-border transport affecting Taoyuan’s air quality.
This study applied three statistical methods including Pearson, cluster analysis, and PCA to investigate similarities of pollutant levels for monitoring stations in Taoyuan County. The results indicate that spatial distribution of PM10 is similar from Pearson and PCA methods. The analysis on O3 shows that cluster analysis and PCA are close to each other. An identical result also appears on NO2 and CO. With regard to spatial distribution of SO2, it shows proximity between Pearson and cluster analysis.
1. Calori, G., Finzi, G. and Tonezzer, C., “A Decision-Support System For Air-Quality Network Design”, Environmental Monitoring and Assessment, Vol. 33, pp. 101-114, (1994).
2. Kao, J. J. and Hsieh, M. R., “Utilizing multiobjective analysis to determine an air quality monitoring network in an industrial district”, Atmospheric Environment, Vol. 40, pp. 1092-1103, (2006).
3. 桃園縣政府主計室,各鄉鎮市面積及人口成長統計,http://www.tycg.gov.tw/cgi-bin/SM_theme?page=40bed340,2005。
4. 陳慶和、劉偉麟、陳嘉興、廖述良、陳清南、陳永信、陳怡誠、李中和,永續空氣品質監測網多目標規劃理論及系統之發展,2004台灣環境資源永續發展研討會論文摘要集,第62-63頁,台灣環境資源永續發展協會,台中縣,2004。
5. 經濟部工業局,工廠登記數及成長統計,http://www.moeaidb.gov.tw/,2005。
6. 行政院環境保護署,台灣地區空氣品質監測網簡介,http://www.epa.gov.tw/psi/emcpro.html,1999。
7. 蔣慧珍,空氣品質監測系統查核管理與資料分析管理,行政院環境保護署,EPA-95-L105-03-001,2006。
8. 商俊盛,氣象因子對北、高都會區空氣品質變化影響之研究,國立台灣大學大氣科學研究所碩士論文,1997。
9. 林文印,空氣品質監測站網臭氧分布解析,行政院環境保護署,EPA-95-FA11-03-A149, 2006。
10. 陳淨修、呂承萱,空氣品質監測網之規劃及配置準則,台灣環境保護,第五期,第75-87頁,1990。
11. Chang, S. Y. and Liaw, S. L., “An Efficient Implicit Enumeration Algorithm for Multistage Algorithm System”, TIMS/ORSA Joint National Meeting, New Orleans, LA, USA, (1987).
12. Chen, C. H., Liaw, S. L., Wu, R. S., Chen, Q. L., and Chen, J. L., “Development of a Decision Making Theory and a Decision Support System for River Basin Water Management”, Proceedings of the National Science Council-- Part A: Physical Science and Engineering, Vol. 21, No. 5, pp. 389-409 ,(2006).
13. 張順欽、黃世敏,環境空氣品質監測系統之規劃營運與資料應用,工業污染防治,第53期,第1-31頁,1995。
14. 陳熙灝,台灣地區空氣品質監測現況與發展,中國統計通訊,第七卷,第十期,第2-20頁,1996。
15. 李彥儒,都市地區空氣品質監測網設置地點評估方法之研究,國立成功大學碩士論文,1991。
16. 吳義林、許德仁、蔡德明、陳穩至、邱慧真,空氣品質監測站代表性評估期末報告,行政院環境保護署八十七年度專案研究計畫,國立成功大學環境工程學系,1998。
17. U.S. EPA, “ The Ambient Air Monitor Program.” http://www.epa.gov/ora/oaqps/qa/monprog.html, (1999).
18. 李姍玟,空氣品質監測站設置之評估,國立中興大學資源管理研究所碩士論文,1998。
19. 張順欽、陳熙灝、李崇德,台灣地區空氣品質監測現況與運轉經驗,工業污染防治,第67期,第100-123頁,1998。
20. Nakamori, Y. and Sawaragi, Y., “Interactive Design of Urban Level Air Quality Monitoring Network”, Atmospheric Environment, Vol. 18(4), pp. 793-799, (1984).
21. Wayne, R. O., “Development of Criteria for Siting Air Monitoring Stations”, Journal of the Air Pollution Control Association, Vol. 27, pp. 543-547, (1977).
22. 白曛綾,科學工業園區空氣品質監測規劃揮發性有機物(VOCs)背景濃度調查,科學工業園區管理局,1999。
23. 程萬里、周經芳,地區空氣品質監測系統之比較,第十四屆空氣污染控制技術研討會論文集,第759-765頁,國立中興大學,台中市,1997。
24. Carty, C. L., Gehring, U., Cyrus, J., Bischof, W. and Heinrich, J., “Seasonal variability of endotoxin in ambient fine particulate mater”, Journal of Environmental Monitoring, Vol. 5, pp. 953-958, (2003).
25. Croxford, B., and Penn, A., “Siting considerations for urban pollution monitors”, Atmospheric environment , Vol. 32, No. 6, pp. 1049-1057, (1998)
26. Tseng, C. C. and Chang, N. B., “Assessing relocation strategies of urban air quality monitoring stations by GA-based compromise programming”, Environmental International, 26, pp. 523-541, (2001).
27. Kemp, K., and Palmgren, “The Danish urban air quality monitoring program”, The Science of the Total Environment, 189/190, pp.27-34, (1996).
28. 張能復、鄭福田、蔡俊鴻、張晃彰、林金源、吳曉窗,台北市空氣污染偵測網選站準則之研究,台北市政府環境保護局,國立台灣大學環境工程研究所,1986。
29. 劉國棟,台灣地區空氣品質監測站網規劃理論比較研究,第八屆空氣污染控制技術研討會論文集,第543-552頁,國立中興大學,台中市,1991。
30. 陳淨修、張美玉,台灣地區北中南空氣品質監測站屬性及濃度變化之探討,工業污染防治,第12卷,第3期,第41-50頁,1993。
31. 雷孟岳、李清勝,防範於未然—淺談空氣品質淺勢預報,科學月刊,第23卷,第6期,第437-442頁,1992。
32. 柳中明、蘇維中,區域性氣象環境與高臭氧之相關分析,大氣化學,第25卷,第1期,第22-49頁,1997。
33. 鄭淑燕、鄭曼婷,台中地區空氣品質分析,第八屆空氣污染控制技術研討會論文集,1991。
34. Ziomas, I. C., Melas, D., Zereros, C. S., and Bais, A. F., “Forecasting Peak Pollutant Levels from Meteorological Variables”, Atmospheric Environment, Vol. 29, pp. 3703-3711, (1994).
35. Hargreaves, P. R., Leidi, A., Grubb, H. J., Howe, M. T., Mugglestone, M. A., “Local and seasonal variations in atmospheric nitrogen dioxide levels at Rothamsted, UK, and relationships with meteorological conditions”, Atmospheric Environment 34, pp.843-853, (2000).
36. Gehrig, R., and Buchmann, B., “Characterising seasonal variations and spatial distribution of ambient PM10 and PM2.5 concentrations based on long-term Swiss monitoring data”, Atmospheric Environment, 37, pp.2571-2580, (2003).
37. 李清勝,影響大台北地區懸浮微粒濃度變化之氣象分析,大氣科學,第20卷,第4期,第341-361頁,1992。
38. 姜善鑫、盧光輝、劉富吉,台北地區逆溫層之研究,國立台灣大學地理系地理學報,第17期,第65-76頁,1994。
39. 黃景智,空氣污染物濃度空間分布特性之研究,國立中央大學環境工程研究所,1995。
40. Fernau, M. E., and Samson, P. J., “Use of Cluster Analysis to Define Periods of Similar Meteorology and Precipitation Chemistry in Eastern North America Part I: Transport Pattern”, J. Appl. Meteorol., 29 A, pp. 735-750, (1990).
41. Dorling, S. R., Davies, T. D., Pierce C. E., “Cluster Analysis: A Technique for Estimating the Synoptic Meteorological Controls on Air and Precipitation Chemistry—Method and Applications”, South Scotland, Atmos. Environ., 26A, No. 14, pp. 2575-2581, (1992).
42. Chou, C.C.K., and Lee, C. T., “Applied Cluster Analysis and Linear Programming Technique in Resolving Source Apportionment of Ambient Aerosols from Taipei Metropolitan Area”, Fourth International Aerosol Conference, Los Angeles, CA., Aug.28-Sep.2,(1994).
43. Maugeri, M., Valentini, M., and Marcazzan, G. M., “Elemental Characterisation of Atmospheric Aerosol Collected in an Urban Center of Northern Italy”, Aerosol Sci., 21A, No.1, pp. 339-342, (1990).
44. Huang,G., “A Stepwise Cluster Analysis Method for Predicting air Quality in an Urban Enviroment”, Atmospheric Enviroment, 26B, pp. 349-357, (1992).
45. 蘇侯洵、白曛綾,以時間序列法預估空氣品質可行性之研究,第十屆空氣污染控制技術研討會論文集,第567-576頁,1993。
46. 程萬里、張維翰,空污測站測值的統計研究,中華民國環境學會會誌,第18卷,第1期,第1-14頁,1995。
47. 王嘉弘、吳清吉,氣象條件對空氣品質的影響,第七屆空氣污染控制技術研討會,1990。
48. 詹俊南、張能復,利用主成分法分析PM10日平均值變動及篩選事件日,第十三屆空氣污染控制技術研討會論文集,1996。
49. 王俊凱,台灣地區大氣氣膠特性之研究-高雄、台北都會區氣膠特性與污染來源推估,國立中央大學環境工程研究所碩士論文,2000。
50. 黃建源,多變量統計方法在日月潭水庫水質管理之應用,逢甲大學土木及水利工程研究所碩士論文,2000。
51. 蔡明昊,德基水庫不同位址底泥、土壤與水質之關係,國立中興大學土壤環境科學系碩士論文,2002。
52. 唐振雄,台北市空氣監測站間污染物濃度分布及特性分析,國立台灣大學環境工程研究所碩士論文,2004。
53. 邱皓政,量化研究與統計分析,五南圖書出版公司,2003。
54. 黃俊英,多變量分析,華泰圖書公司,2000。