跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳威年
Wei-Nien Chen
論文名稱: 添加溶劑對於鈣鈦礦薄膜太陽能電池表現之影響
Influence of the solvent additives on the photovoltaic peroformance of organometal lead perovskite based solar cells
指導教授: 陳昇暉
Sheng-Hui Chen
張勝雄
Sheng Hsiung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 90
中文關鍵詞: 鈣鈦礦太陽能電池
外文關鍵詞: perovskite
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著綠能意識抬頭,太陽能的應用成為重要的課題之一,因此太陽能電池的光電轉換效率成為眾所矚目的焦點。近年來,以鈣鈦礦(Perovskite)薄膜太陽能電池的功率轉換效率(power conversion efficiency, PCE)之突破最為迅速,深具發展潛力。
    本論文研究的太陽能電池之元件架構為: Ag/PC61BM/CH3NH3PbI3/PEDOT:PSS/ITO/glass。Ag與ITO (氧化銦錫)分別為陰極與陽極; [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM )與Poly(3-hexylthiophene-2,5-diyl) (PEDOT:PSS)分別是電子傳輸層(electron transport layer, ETL)與電洞傳輸層(hole transport layer, HTL); CH3NH3PbI3則是鈣鈦礦結構吸光層。以ITO/glass作為基板,旋塗上PEDOT:PSS、CH3NH3PbI3、PC61BM各層薄膜,最後熱蒸鍍Ag作為陰電極,完成元件製作。經優化製程參數後,得到的最佳元件表現為:最高功率轉換效率達到13.35% ; 短路電流(short-circuit current density, JSC )達22.9 1mA/cm2 ; 開路電壓(open-circuit voltage, VOC )達 0.95 V;填充因子(fill factor, FF)達61.55 %。


    The research and the development of solar cells have achieved more attention with the consciousness of greenergy economy is gradually risen in the global.Recently, the power convertion efficiency of Perovskite solar cell is improved rapidly, containing potential of development.
    In this thesis, the structure of the Perovskite solar cells is silver/PC61BM/CH3NH3PbI3/PEDOT:PSS/ITO/glass. Silver and ITO are the cathode and anode. PCBM and PEDOT:PSS are the electron transport and hole transport layers. CH3NH3PbI3 is the Perovskite absorber. PEDOT:PSS, CH3NH3PbI3 and PC61BM layers were coated on the ITO glass substrate by using spin coater sequentially. Finally, a silver layer was coated on the top of PCBM thin film by thermal evaporation deposition to form the device. After the optimized process, the best power convertion efficiency of the device could achieve 13.35%. The short-circuit current density, the open-circuit voltage, and the fill factor achived 22.91 mA/cm2, 0.95 V, and 61.55%.

    第一章 緒論 1 1.1 前言 1 1.2 太陽能電池歷史與種類簡介 3 1.2.1 無機太陽能電池 4 1.2.2 有機太陽能電池 (OPV) 5 1.2.3 染料敏化太陽能電池 (Dye Sensitized Solar Cell,DSSC) 8 1.3 研究動機 10 1.4 本文架構 12 第二章 鈣鈦礦材料基礎理論與發展 13 2.1 鈣鈦礦結構源起: 13 2.2 敏化太陽電池結構之鈣鈦礦元件 ( Sensitized Solar Cell Structure for Perovskite devices) 14 2.3 平面異質介面鈣鈦礦太陽能電池 ( Planar heterojunction perovskite solar cells ) 16 2.4 影響鈣鈦礦薄膜之因素 17 2.5薄膜鈣鈦礦太陽能電池工作原理 20 第三章 實驗方法 22 3.1實驗藥品與儀器 22 3.1.1實驗藥品 22 3.1.2太陽光模擬器(Solar Simulator , YSS-50A) 24 3.1.3光激發螢光光譜儀(Photoluminescence,PL,UniRAM)、拉曼散射光譜儀(Raman scattering spectrometer, UniRAM)、時間解析之螢光光譜儀( Time-resolved photoluminescence spectrometer) 25 3.1.4紫外光/可見光光譜儀(UV/VIS Spectrophotometer , Hitachi U-4100) 27 3.1.5原子力顯微鏡(Atomic Force Microscope,AFM, SEIKO E-sweep System) 28 3.1.6熱蒸鍍鍍膜系統(thermal evaporation deposition) 29 3.2 藥品合成與溶液調配 30 3.2.1 甲基胺碘藥品合成 30 3.2.2溶液調配 31 3.3 鈣鈦礦薄膜太陽能電池製作流程 32 3.3.1 清洗ITO pattern 基板 34 3.3.2 UV Ozone cleaner 34 3.3.3旋塗PEDOT:PSS層 34 3.3.4旋塗鈣鈦礦層與熱退火處理 35 3.3.5 旋塗PC61BM層及靜置處理 36 3.3.6 刮除對電極 36 3.3.7 蒸鍍銀電極 36 第四章 鈣鈦礦薄膜太陽能電池製作結果之量測分析 37 4.1鈣鈦礦薄膜太陽能電池優化文獻回顧與改善動機 39 4.2利用DMF溶劑蒸氣增加鈣鈦礦晶粒大小 40 4.3 延長電子傳輸層(PC61BM)靜置時間降低激子再復合機率 43 4.4 使用不同沸點反溶劑對鈣鈦礦晶粒大小與膜平整度影響 46 4.5 調整電洞傳輸層的功函數 52 4.6最佳參數選擇 63 4.7最佳製程參數之太陽能電池量測 64 4.8長時間穩定度測試 65 第五章 結論 66 參考文獻 68

    [1] 張品全, "太陽電池," 科學發展, vol. 349, 2月 2002.
    [2] L. L. Kazmerski, "Best Reaserch-Cell Efficiencies," NERL, 3/9 2016.
    [3] L. Peck, "Solar history: Alexandre Edmond Becquerellar," Solar Energy World Solar Panels, 2011.
    [4] A. Chodos, "This Month in Physics History April 25, 1954: Bell Labs Demonstrates the First Practical Silicon Solar Cell," APS Physics, 2009.
    [5] Y. H. Kuang, M. Di Vece, J. K. Rath, L. van Dijk, and R. E. I. Schropp, "Elongated nanostructures for radial junction solar cells," Reports on Progress in Physics, vol. 76, p. 29, Oct 2013.
    [6] B. O’regan and M. Grfitzeli, "A low-cost, high-efficiency solar cell based on dye-sensitized," nature, vol. 353, pp. 737-740, 1991.
    [7] R. Komiya, A. Fukui, N. Murofushi, N. Koide, R. Yamanaka, and H. Katayama, "Improvement of the conversion efficiency of a monolithic type dyesensitized solar cell module," in Technical Digest of the 21st International Photovoltaic Science and Engineering Conference, 2C-5O-08, Fukuoka, Japan, 2011.
    [8] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Gratzel, "Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency," Energy & Environmental Science, vol. 9, pp. 1989-1997, 2016.
    [9] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, vol. 131, pp. 6050-6051, 2009.
    [10] G. F. L. M.W. Davidson, "Photomicrography in the geological sciences.," Journal of Geological Education, vol. 39, pp. 403-422, 1991.
    [11] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, "Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3," Science, vol. 342, pp. 344-347, 2013.
    [12] K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, and N. Miura, "Comparative study on the excitons in lead-halide-based perovskite-type crystals CH 3 NH 3 PbBr 3 CH 3 NH 3 PbI 3," Solid state communications, vol. 127, pp. 619-623, 2003.
    [13] C.-C. Chen, S. H. Chang, L.-C. Chen, F.-S. Kao, H.-M. Cheng, S.-C. Yeh, C.-T. Chen, W.-T. Wu, Z.-L. Tseng, and C. L. Chuang, "Improving the efficiency of inverted mixed-organic-cation perovskite absorber based photovoltaics by tailing the surface roughness of PEDOT: PSS thin film," Solar Energy, vol. 134, pp. 445-451, 2016.
    [14] S. H. Chang, H.-M. Cheng, S.-H. Chen, and K.-F. Lin, "Optical, Excitonic, and Electronic Properties of CH3NH3PbI3 Thin Films and Their Application in Photovoltaics," 2016.
    [15] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell," Nanoscale, vol. 3, pp. 4088-4093, 2011.
    [16] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, and J. E. Moser, "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," Scientific reports, vol. 2, 2012.
    [17] J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, "Low-temperature processed meso-superstructured to thin-film perovskite solar cells," Energy & Environmental Science, vol. 6, pp. 1739-1743, 2013.
    [18] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, "Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells," Nano letters, vol. 13, pp. 1764-1769, 2013.
    [19] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, vol. 499, pp. 316-319, 2013.
    [20] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, "Interface engineering of highly efficient perovskite solar cells," Science, vol. 345, pp. 542-546, 2014.
    [21] J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, "Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells," Nature nanotechnology, vol. 9, pp. 927-932, 2014.
    [22] M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, pp. 395-398, 2013.
    [23] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, "Planar heterojunction perovskite solar cells via vapor-assisted solution process," Journal of the American Chemical Society, vol. 136, pp. 622-625, 2013.
    [24] J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, and T. C. Wen, "CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells," Advanced Materials, vol. 25, pp. 3727-3732, 2013.
    [25] W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, and M. A. Alam, "High-efficiency solution-processed perovskite solar cells with millimeter-scale grains," Science, vol. 347, pp. 522-525, 2015.
    [26] H.-S. Kim, S. H. Im, and N.-G. Park, "Organolead halide perovskite: New horizons in solar cell research," The Journal of Physical Chemistry C, vol. 118, pp. 5615-5625, 2014.
    [27] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," Nature materials, vol. 13, pp. 897-903, 2014.
    [28] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray‐Weale, U. Bach, Y. B. Cheng, and L. Spiccia, "A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells," Angewandte Chemie, vol. 126, pp. 10056-10061, 2014.
    [29] F. Huang, Y. Dkhissi, W. Huang, M. Xiao, I. Benesperi, S. Rubanov, Y. Zhu, X. Lin, L. Jiang, and Y. Zhou, "Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells," Nano Energy, vol. 10, pp. 10-18, 2014.
    [30] W.-J. Yin, T. Shi, and Y. Yan, "Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber," Applied Physics Letters, vol. 104, p. 063903, 2014.
    [31] J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. Van Schilfgaarde, and A. Walsh, "Atomistic origins of high-performance in hybrid halide perovskite solar cells," Nano letters, vol. 14, pp. 2584-2590, 2014.
    [32] D. Liu and T. L. Kelly, "Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques," Nature photonics, vol. 8, pp. 133-138, 2014.
    [33] M. H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P. Boix, and N. Mathews, "Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells," Chemical Communications, vol. 49, pp. 11089-11091, 2013.
    [34] K.-F. Lin, S. H. Chang, K.-H. Wang, H.-M. Cheng, K. Y. Chiu, K.-M. Lee, S.-H. Chen, and C.-G. Wu, "Unraveling the high performance of tri-iodide perovskite absorber based photovoltaics with a non-polar solvent washing treatment," Solar Energy Materials and Solar Cells, vol. 141, pp. 309-314, 2015.
    [35] Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, "Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement," Advanced Materials, vol. 26, pp. 6503-6509, 2014.
    [36] S. H. Chang, K.-F. Lin, K. Y. Chiu, C.-L. Tsai, H.-M. Cheng, S.-C. Yeh, W.-T. Wu, W.-N. Chen, C.-T. Chen, and S.-H. Chen, "Improving the efficiency of CH 3 NH 3 PbI 3 based photovoltaics by tuning the work function of the PEDOT: PSS hole transport layer," Solar Energy, vol. 122, pp. 892-899, 2015.
    [37] D. Alemu, H.-Y. Wei, K.-C. Ho, and C.-W. Chu, "Highly conductive PEDOT: PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells," Energy & environmental science, vol. 5, pp. 9662-9671, 2012.
    [38] J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, and J. Shinar, "On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment," Polymer, vol. 45, pp. 8443-8450, 2004.
    [39] M. Lee, D. Lee, N. Jung, M. Yun, C. Yim, and S. Jeon, "Evaporation of water droplets from hydrophobic and hydrophilic nanoporous microcantilevers," Applied Physics Letters, vol. 98, p. 013107, 2011.
    [40] J. Zhao, S. Jiang, Q. Wang, X. Liu, X. Ji, and B. Jiang, "Effects of molecular weight, solvent and substrate on the dewetting morphology of polystyrene films," Applied surface science, vol. 236, pp. 131-140, 2004.

    QR CODE
    :::