跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周明弘
Ming-hong Jhou
論文名稱: 儲氫材料Mg2Ni生長動力學之研究
Study of intermetallic growth in Mg-Ni diffusion couples
指導教授: 高振宏
C. Robert Kao
鄭紹良
Shao-Liang Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 53
中文關鍵詞: 儲氫材料擴散偶
外文關鍵詞: hydrogen storage materials, Mg2Ni, diffusion couples
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗分為兩部分來進行,分別是固態Mg與固態Ni進行界面反應與在介金屬Mg2Ni中主要擴散元素的探討,然後進一步計算Mg-Ni界面反應動力學資料。
    此實驗主要是利用Mg片與Ni片組成擴散偶,再將此擴散偶分別在400、430、450和480℃下進行10到75小時的熱處理,熱處理完的試片經金相處理後,在以掃描式電子顯微鏡觀察界面處的介金屬生長情形,接著透過電子微探儀去做組成的鑑定。為了更精確判斷介金屬生成種類,將反應過的擴散偶沿界面拆開,以Ni片端去做X光繞射分析。由實驗結果顯示在界面處只可以觀察到Mg2Ni相的存在,且此介金屬生長厚度對反應時間的二分之ㄧ次方呈線性關係,故Mg2Ni生長行為擴散控制。
    另一部份為探討在Mg-Ni擴散偶中,於400-480℃下界面反應生成Mg2Ni相的主要擴散元素,根據電子顯微鏡觀察反應後的試片結果顯示,Mg為介金屬相中的主要擴散元素,此實驗結果與文獻中Mg-Ni在225℃之界面反應的主要擴散元素不同,我們推測因溫度上的差異造成介金屬中的主要擴散元素改變的現象,但我們實驗結果並無法支持此推論,仍需更多的實驗數據來證實。


    Two sets of experiments were carried out in this work. The first was the reaction between solid Mg and solid Ni, and the second was the investigation of dominant diffusion species in the formation of Mg2Ni. The data of kinetics for Mg-Ni interfacial reaction would be established.
    In this work, the Mg and Ni sheets were combined and then taken to perform solid/solid reaction at 400℃, 430℃, 450℃ and 480℃ for 10~75 hours, respectively. The morphology of the heat-treated specimens was observed by scanning electron microscope(SEM). The chemical composition was measured by electron probe microanalysis(EPMA). The diffusion couple specimen was taken apart to analysis which kind of intermetallic compound was formed at the interface of Mg/Ni by X-ray diffractometer(XRD). The result showed that just single Mg2Ni phase was formed at the interface of Mg/Ni and the thickness of Mg2Ni is linear to the square root of reaction time. Thus, it is believed that the reaction of the formation of Mg2Ni at the Mg/Ni interface is diffusion controlled.
    In addition, it was also investigated that which element in Mg/Ni diffusion couple diffused faster at reaction temperature between 400 and 480℃. The result presented that Mg possesses higher diffusivity than Ni in accordance with SEM pictures. However, this result is different from that of other researchers made by simulation of Rutherford backscattering spectrometer(RBS) research of Mg/Ni coating membrane at relatively low temperature(225℃). We consider that the dominant diffusion species in the formation of Mg2Ni could change at different reaction temperature. But this assumption need more experimental result to support.

    中文摘要…………………………………………………………………Ⅰ 英文摘要…………………………………………………………………Ⅱ 目錄………………………………………………………………………Ⅴ 圖目錄……………………………………………………………………Ⅶ 表目錄……………………………………………………………………Ⅸ 第一章 緒論 1.1研究背景…………………………………………………….1 1.1.1氫能源與儲氫材料……………………………………1 1.1.2儲氫合金……………………………………………………......4 1.1.3鎂基儲氫合金………………………………………………......6 1.2研究目的…………………………………………………….9 第二章 文獻回顧與實驗規劃 2.1鎂鎳二元平衡相圖………………………………………………...10 2.2鎂鎳界面反應……………………………………………………...11 2.3擴散反應…………………………………………………………...15 2.3.1擴散機制…………………………………………………….....16 2.3.2交互擴散及界面反應……………………………………….....18 2.3.3 Kirkendall效應……………………………………………....21 2.4實驗規劃…………………………………………………………...23 第三章 實驗方法及步驟 3.1固態鎂與固態鎳在400-480℃的界面反應………………………..24 3.2溫度400-480℃時介金屬中主要擴散元素………………………..29 第四章 實驗結果 4.1固態鎂與固態鎳之界面反應………………………………31 4.1.1 掃描式電子顯微鏡觀察……………………………….31 4.1.2 EPMA組成分析結果………………………………………......38 4.1.3 XRD實驗結果…………………………………………….......40 4.1.4鎂鎳的反應動力學………………………………………….....41 4.2主要擴散元素……………………………………………………...45 第五章 結果討論 5.1未觀察到MgNi2的原因…………………………………………....47 5.2主要擴散元素……………………………………………………...48 第六章 總結…………………………………………………………50 參考文獻…………………………………………………………………52

    [BAG] P. Bagnoud and P. Feschotte, Z. Metallkd., 69, p.114- 120, 1978.
    [DHE] F. M. d’Heurle, P. Gas, C. Lavoie and J. Philibert,
    Z. Metallkd., 95, p.852-859, 2004.
    [DIL] A.C. Dillon, K. M. Jones, T. A. Bekkedahl, Nature,
    386, p377, 1997.
    [DOE] U.S. Department of energy (DOE), Basic Research
    Needs for the Hydrogen Economy, 2003.
    [HAU] J. L. Haughton and R. J. Payne, J. Inst. Met., 54,
    p.275–283, 1934.
    [HON] Q. Z.Hong and F. M. d’Heurle, J. Appl. Phys., 72,
    p.4036-4040, 1992.
    [NAY] A. A. Nayeb-Hashemi and J. B. Clark, Bulletin of
    Alloy Phase Diagrams, 6, P.238, 1985.
    [OGD] J.M.Ogden, Physics Today, p.69, 2002.
    [REI] A.L. Reimann, Philos. Mag., vol. 16, p.673, 1933.
    [SEL] P. Selvam, B Viswanathan, C.S. Swamy, V. Srinivasan,
    Int., J. Hydrogen Energy, 11, P.169, 1986.
    [STA] J. F. Stampfer Jr., C. E. Holley Jr., and J. F.
    Suttle, J. Am. Chem. Soc., 82, P.3504, 1960.
    [TOP] J. Topler, H. Buchner, H. Saufferer, H. Knorr, and
    W. Prandl, J. Less- Common Met., 88, p.397, 1982.
    [TSA] C. L. Tsao and S. W. Chen, J. Mater. Sci., 30,
    p.5215-5222, 1995.
    [VAN] F. J. J. van Loo and G. D. Reick, Acta Metall., 21,
    p.61, 1973.
    [VIG] B. Vigeholm, J. Kjoller, and B. Larsen, J. Less-
    Common Met., 74, P.341, 1980.
    [VOS] G. Voss, Chem., 57, p.61-67, 1908.
    [WAG] C. Wagner, Z. Anorg. Allgem. Chem., 236, p.320, 1938.
    [ZEN] C. Zener, J.Appl. Phys., 22, p.372, 1951.
    [ZÜT1] A. Züttel and L. Schlapbach, Nature, 414, p.353,
    2001.
    [ZÜT2] A. Züttel, Materials Today, September, P.24, 2003.
    [胡子龍] 胡子龍编著,儲氫材料,北京(化學工業出版社),P.148,
    2002。

    QR CODE
    :::