| 研究生: |
李弘霖 Hung-lin Lee |
|---|---|
| 論文名稱: |
藉由高分子螯合鑭系金屬有機網狀架構材料之光激光性質結合味道τ 尺度作為人工仿生舌頭之應用 A Biomimetic Tongue by τ Scale of Taste and Photoluminescence Response of Lanthanide and Polymer Chelated Metal-Organic Frameworks |
| 指導教授: |
李度
Tu Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 金屬有機架構材料 、仿生鼻子 、τ尺度 、光激光 |
| 外文關鍵詞: | photoluminescence, τ scale, biomimetic tongue, Metal organic framework |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
味覺的辨認屬於一種化學感測的系統,作為評估食品及飲料的用途。因此,味覺具有很重要的應用,像是口服藥物成分的分析、食品及飲料品質的控制甚至是醫學上的診斷等等,所以我們嘗試利用具有良好化學穩定性及光激光性質的金屬有機架構材料(即:[In(OH)bdc]n和MOF-76)來模仿人類舌頭的運作原理。
在此研究中,首先藉由溶熱法(類似水熱法)合成金屬有機架構材料,並利用此材料之光激放光(PL)之訊號透過二維的主成分分析(PCA)來識別五種味道:甜、苦、酸、鹹及鮮其相對應之味道分子。主成分是由兩種不同的金屬有機架構材料接觸不同濃度的不同味道分子導致不同的放光性以及放光強度所構成。取其最強放光之波長作為x軸(即主成分1),而放光強度與味道分子溶液濃度之間的關係式之斜率作為y軸(即主成分2),來譜出主成分分析之圖形。第二則是藉由放光強度結合味道τ尺度作為味道的定量。此實驗之感測時間為12小時,而感測濃度範圍從10-1M至10-5 M。
此金屬有機架構材料作為仿生舌頭之應用具有以下幾點特色:(1) 高分子(即聚丙烯酸)螯合在金屬有機架構材料上,高分子扮演著舌頭味道感受器的角色。當高分子與味道分子進行交互作用後進而影響金屬有機架構材料之發光機制,導致產生不同之放光波長,達到辨識味道分子的效果,(2) 舌頭對於感覺的強度與味道濃度成指數關係成正比,稱之為Weber-Fechner Law of Human Sensing,此與光激光強度關係類似,(3) 以味道τ尺度結合光激光性質對味道作定量探討,(4) 經由模式辨識方式-主成分分析(PCA)來識別五種味道所對應的味道分子。
最後我們發展出一種製備金屬有機架構材料薄膜的方法,經由將含有金屬有機架構及高分子之反應液塗佈在基材上,使其揮發後即可作為感測味道之應用。此法的優點為:薄膜之透明度高、可塗佈於大面積基材上及方便製備等。
The sense of taste is a specialized chemosensory system dedicated to the evaluation of food and drink. The taste has important roles in the development of oral pharmaceutical formulation, and the control of food quality. Thus, we propose to mimic the working principle of a human tongue through the use of fascinating luminescent materials of metal-organic frameworks (i.e. [In(OH)bdc]n and Tb(btc) (namly, MOF-76)).
In this study, solvothermal method was used to synthesis metal organic frameworks and characterized by POM, FT-IR, PL, TGA and PXRD. We have used the photoluminescence (PL) responses of polyacrylic acid-chelated [In(OH)bdc]n and lanthanide Tb(btc) to demonstrate the applicability of MOF-based biomimetic tongue through: (1) identification of five tastes of sweet, bitter, sour, salty and umami by 2-D PCA to distinguish the corresponding tastants of sucrose, caffeine, citric acid, sodium chloride and monosodium glutamate. The plot of PL emission wavelengths of λ = 344, 436, 347, 394, and 335 nm for sucrose-, caffeine-, citric acid-, sodium chloride-, and monosodium glutamate-adsorbed polyacrylic acid-chelated [In(OH)bdc]n as x-coordinates and the slopes of equations between PL emission intensities and concentrations of tastants: 96.1, 126.9, 70.4, 40.5, and 140.8 for sucrose-, caffeine-, citric acid-, sodium chloride-, and monosodium glutamate-adsorbed MOF-76 as y-coordinates. (2) quantification of the strength of five tastes determined by the relationships between the PL intensity and the τ scale of taste. The detection time is 12 h and the detection range of concentrations is from 10-1 M to 10-5 M in this study.
There are several important features of our MOF-based “biomimetic tongue”: (1) poly(acrylic acid) (PAA) on [In(OH)(bdc)]n is implemented to mimic the structural flexibility of taste receptor cells (TRCs), (2) the analogue of the Weber-Fechner Law of Human Sensing that sensation is proportional to the logarithm of the stimulus intensity is observed between the PL emission response of MOF-76 and the concentration of the tastant, (3) the strength of taste can be quantified by the ? scale and the PL emission intensity of MOF-76, both of which are dependent on the logarithmic concentration of the tastant, (4) the tastant is identified and distinguished based on a pattern recognition method (i.e. principal component analysis).
Finally, this study have developed a method to fabricate the [In(OH)bdc]n/PAA film by brushing. The advantages of this method were: (1) [In(OH)bdc]n could be easily brushed on surfaces of substrate or cover glass to form a transparent thin film, (2) [In(OH)bdc]n could be also spread evenly on the surfaces, and (3) it is convenient to make [In(OH)bdc]n/PAA film through brushing the resulting solution on substrates.
Lindemann, B. Receptors and transduction in taste. Nature 2001, 413(6852), 219-225.
Jain, H.; Panchal, R.; Pardhan, P.; Patel, H.; Pasha, T. Y. Electronic tongue: a new taste sensor. IJPSRR. 2010, 5(2), 91-96.
http://www.magazine.ayurvediccure.com (accessed June 05, 2012).
Yarmolinsky, D. A.; Zuker, C. S.; Ryba, N. J. P. Common sense about taste: from mammals to insects. Cell 2009, 139(2), 234-244.
Mallick, H. N. Understanding safety of glutamate in food and brain. J. Physiol. Pharmacal. 2007, 51(3), 216-234.
http://wikis.lib.ncsu.edu/index.php/Main_Page (accessed June 05, 2012).
Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Introduction to metal organic frameworks. Chem. Rev. 2012, 112(2), 673-674.
Kitagawa, S.; Kitaura, R.; Noro, S.-I. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43(18), 2334-2375.
Janiak, C.; Vieth, J. K. MOFs, MILs and more: concepts, properties, and applications for porous coordination networks (PCNs). New J. Chem. 2010, 34, 2366-2388.
Hoskins, B. F.; Robson, R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 1989, 111(15), 5962-5964.
Li, Y.; Yang, R. T. Gas adsorption and storage in metal organic framework MOF-177. Langmuir 2007, 23(26), 12937-12944.
Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Selective gas adsorption and separation in metal organic frameworks. Chem. Soc. Rev. 2009, 38(5), 1477-1504.
Gomez-Lor, B.; Gutierrez-Puebla, E.; Iglesias, M.; Monge, M. A.; Ruiz-Valero, C.; Snejko, N. In2(OH)3(BDC)1.5 (BDC = 1,4-Benzendicarboxylic acid): An In (III) supramolecular 3D framework with catalytic activity. Inorg. Chem. 2002, 41(9), 2429-2432.
Zhao, B.; Chen, X.-Y.; Cheng, P.; Liao, D.-Z.; Yan, S.-P.; Jiang, Z.-H. Coordination polymers containing 1D channels as selective luminescent probes. J. Am. Chem. Soc. 2004, 126(47), 15394-15395.
Chen, B.; Xiang, S.; Qian, G. Metal-organic frameworks with functional pores for recognition of small molecules. Accounts Chem. Res. 2010, 43(8), 1115-1124.
Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metal-organic frameworks in biomedicine. J. Am. Chem. Soc. 2012, 112(2), 1232-1268.
Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402(6759), 276-279.
Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112(2), 1126-1162.
Klimakow, M.; Klobes, P.; Thünemann, A. F.; Rademann, K.; Emmerling, F.; Mechanochemical synthesis of metal−organic frameworks: a fast and facile approach toward quantitative yields and high specific surface areas. Chem. Mater. 2010, 22(18), 5216-5221.
Braga, D.; Grepioni, F.; Maini, L.; Mazzeo, P. P.; Ventura, B. Solid-state reactivity of copper(I) iodide: luminescent 2D-coordination polymers of CuI with saturated bidentate nitrogen bases. New J. Chem. 2011, 35, 339-344.
Yuan, W.; Friščič, T.; Apperley, D.; James, S. L. High reactivity of metal-organic frameworks under grinding conditions: parallels with organic molecular materials. Angew. Chem. Int. Ed. 2010, 49(23), 3916-3919.
Son, W.-J.; Kim, J.; Kim, J.; Ahn, W.-S.; Sonochemical synthesis of MOF-5. Chem. Commun. 2008, (47), 6336-6338.
Ni, Z.; Masel, R. I. Rapid production of metal−organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 2006, 128(38), 12394-12395.
Centrone, A.; Harada, T.; Speakman, S.; Hatton, T. A. Facile synthesis of vanadium metal-organic frameworks and their magnetic properties. Small 2010, 6(15), 1598-1602.
Eliseeva, S. V.; Bünzli, J.-C. G. Lanthanide luminescence for functional materials and bio-science. Chem. Soc. Rev. 2010, 39(1), 189-227.
Kaushik, D.; Singh, R. R.; Sharma, M.; Gupta, D. K.; Lalla, N. P.; Pandey, R. K. A study of size dependent structure, morphology and luminescence behavior of CdS films on Si substrate. Thin Solid Films 2007, 515(18), 7070-7079.
Hwang, S.-H.; Moorefield, C. N.; Nwekome, G. R. Dendritic macromolecules for organic light-emitting diodes. Chem. Soc. Rev. 2008, 37(11), 2543-2557.
Veinot, J. G. C.; Marks, T. J. Toward the ideal organic light-emitting diode. The versatility and utility of interfacial tailoring by cross-linked siloxane interlayers. Acc. Chem. Res. 2005, 38(8), 632-643.
Lo, S.-C.; Bum, P. L. Development of dendrimers: macromolecules for use in organic light-emitting diodes and solar cells. Chem. Rev. 2007, 107(4), 1097-1116.
Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Duyne, R. P. V.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112(2), 1105-1125.
Zacher, D.; Shekhah, O.; Wöll, C.; Fischer, R. A. Thin films of metal-organic frameworks. Chem. Soc. Rev. 2009, 38(5), 1418-1429.
Bétard, A.; Fischer, R. A. Metal-organic framework thin films: from fundamentals to applications. Chem. Rev. 2012, 112(2), 1055-1083.
Lu, Z.-Z.; Zhang, R.; Li, Y.-Z.; Guo, Z.-J.; Zheng, H.-G. Solvatochromic behavior of a nanotubular metal-organic framework for sensing small molecules. J. Am. Chem. Soc. 2011, 133(12), 4172-4174.
Lee, H.; Jung, S. H.; Han, W. S.; Moon, J. H.; Kang, S.; Lee, J. Y.; Jung, J. H.; Shinkai, S. A chromo-fluorogenic tetrazole-based CoBr2 coordination polymer gel as a highly sensitive and selective chemosensor for volatile gases containing chloride. Chem.-Eur. J. 2011, 17(10), 2823-2827.
Xie, Z.; Ma, L.; deKrafft, K. E.; Jin, A.; Lin, W. Porous phosphorescent coordination polymers for oxygen sensing. J. Am. Chem. Soc. 2009, 132(3), 922-923.
An. J. Y.; Shade, C. M.; Chengelis-Czegan, D. A.; Petoud, S.; Rosi, N. L. Zinc-adeninate metal-organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations. J. Am. Chem. Soc. 2011, 133(5), 1220-1223.
Lan, A.; Li, K.; Wu, H.; Olson, D. H.; Emge, T. J.; Ki, W.; Hong, M.; Li, J. A luminescent microporous metal–organic framework for the fast and reversible detection of high explosives. Angew. Chem. 2009, 121(13), 2370-2374.
Pramanik, S.; Zheng, C.; Zhang, X.; Emge, T. J.; Li, J. New microporous metal−organic framework demonstrating unique selectivity for detection of high explosives and aromatic compounds. J. Am. Chem. Soc. 2011, 133(12), 4153-4155.
Lu, G.; Hupp, J. T. Metal−organic frameworks as sensors: a ZIF-8 based Fabry−Pérot device as a selective sensor for chemical vapors and gases. J. Am. Chem. Soc. 2010, 132(23), 7832-7833.
Yazaydin, A. O.; Benin, A. I.; Faheem,S. A.; Jakubczak, P.; Low, J. J.; Willis, R. R.; Snurr, R. Q. Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chem. Mater. 2009, 21(8), 1425-1430.
Kreno, L. E.; Hupp, J. T.; Duyne, R. P. V. Metal-organic framework thin film for enhanced localized surface plasmon resonance gas sensing. Anal. Chem. 2010, 82(19), 8042-8046.
Lu, G.; Farha, O. K.; Kreno, L. E.; Schoenecker, P. M.; Walton, K. S.; Duyne, R. P. V. Hupp, J. T. Fabrication of metal-organic framework-containing silica-colloidal crystals for vapor sensing. Adv. Mater. 2011, 23(38), 4449-4452.
Achmann, S.; Hagen, G.; Kita, J.; Malkowsky, I. M.; Kiener, C.; Moos, R. Metal-organic frameworks for sensing applications in the gas phase. Sensors. 2009, 9(3), 1574-1589.
Settle, F. A. Handbook of instrumental techniques for analytical chemistry; Prentice Hall PTR: New Jersey, 1997; pp. 1-15.
Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principle of Instrumental Analysis, 6th Ed.; Thomson Higher Education: Belmont, 2007; pp. 1-24.
Brittain, H. G. Polymorphism in Pharmaceutical Solids; Marcel Dekker, Inc.: New York, 1999; pp. 1-31.
Yu, L.; Reutzei, S. M.; Stephenson, G. A. Physical characterization of polymorphic drugs: an integrated characterization strategy. Pharmaceutical Science & Technology Today 1998, 1(3), 118-127.
Threlfall, T. L. Analysis of organic polymorphs. A review. Analyst 1995, 120(10), 2435-2460.
Kriss, T. C.; Kriss, V. M. History of the operating microscope: from magnifying glass to microneurosurgery. Neurosurgery 1998, 42(4), 899-907.
Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principle of Instrumental Analysis, 6th Ed.; Thomson Higher Education: Belmont, 2007; pp. 430-454.
Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principle of Instrumental Analysis, 6th Ed.; Thomson Higher Education: Belmont, 2007; pp. 455-480.
Sugama, T.; Kukacka, L. E.; Carciello, N. Nature of interfacial interaction mechanisms between polyacrylic acid macromolecules and oxide metal surfaces. J. Mater. Sci. 1984, 19 (12), 4045-4056.
Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principle of Instrumental Analysis, 6th Ed.; Thomson Higher Education: Belmont, 2007; pp. 164-214.
Cho, C. P.; Yu, C. Y.; Perng, T. P. Growth of AlQ3 nanowires directly from amorphous thin film and nanoparticles. Nanotechnology 2006, 17(21), 5506-5510.
Vij, D. R. Luminescence of Solids; Plenum Press: New York, 1998, pp. 108-120.
Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principle of Instrumental Analysis, 6th Ed.; Thomson Higher Education: Belmont, 2007; pp. 336-366.
Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principle of Instrumental Analysis, 6th Ed.; Thomson Higher Education: Belmont, 2007; pp. 367-398.
Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principle of Instrumental Analysis, 6th Ed.; Thomson Higher Education: Belmont, 2007; pp. 894-905.
Eggleston, G.; Trask-Morrell, B. J.; Vercellotti, J. R.; Use of differential scanning calorimetry and thermogravimetric analysis to characterize the thermal degradation of crystalline sucrose and dried sucrose-salt residues. J. Agric. Food Chem. 1996, 44(10), 3319-3325.
Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principle of Instrumental Analysis, 6th Ed.; Thomson Higher Education: Belmont, 2007; pp. 303-331.
Spong, B. R.; Price, C. P.; Jaysasankar, A.; Matzger, A. J.; Hornedo, N. R.; General principles of pharmaceutical solid polymorphism: a supramolecular perspective. Adv. Drug Deliv. Rev. 2004, 56(3), 241-274.
Ciacovazzo, C.; Monaco, H. L.; Artioli, G.; Viterbo, D.; Ferraris, G.; Gilli, G.; Zanotti, G.; Catti, M. Fundamentals of Crystallography, 2nd Ed.; Oxford University Press: New York, 2002; p. 153.
Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295(5554), 469–472.
Eddaoudi, M.; Moler, D. B.; Li, H. L.; Chen, B. L.; Reineke, T. M.; O’Keeffe, M.; Yaghi, O. M. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 2001, 34(4), 319–330.
Wang, Z.; Cohen, S. M. Postsynthetic modification of metal–organic frameworks. Chem. Soc. Rev. 2009, 38(5), 1315-1329.
Tranchemontagne, D. J.; Mendoza-Cortes, J. L.; O’Keeffe, M.; Yaghi, O. M. Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chem. Soc. Rev. 2009, 38(5), 1257-1283.
Collins, D. J.; Zhou, H.-C. Hydrogen storage in metal–organic frameworks. J. Mater. Chem. 2007, 17(30), 3154-3160.
Li, J.-R.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeong, H.-K.; Balbuena, P. B.; Zhou, H.-C. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev. 2011, 255(15-16), 1791-1823.
Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 2009, 38(5), 1477-1504.
Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38(5), 1450-1489.
Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent functional metal–organic frameworks. Chem. Rev. 2012, 112(2), 1126-1162.
Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent metal–organic frameworks. Chem. Soc. Rev. 2009, 38(5), 1330-1352.
Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Duyne, R. P. V.; Hupp, J. T. Metal–organic framework materials as chemical sensors. Chem. Rev. 2012, 112(2), 1105-1125.
Lee, T.; Liu, Z. X.; Lee, H. L. A biomimetic nose by microcrystals and oriented films of luminescent porous metal–organic frameworks. Cryst. Growth Des. 2011, 11(9), 4146-4154.
Horcajada, H; Serre, C.; Vallet-Reg, M.; Sebban, M.; Taulelle, F.; Ferey. G. Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 2006, 45(36), 5974 –5978.
Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metal–organic frameworks in biomedicine. Chem. Rev. 2012, 112(2), 1232-1268.
Yaghi, O. M.; Li, G.; Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature. 1995, 378, 703-706.
Yaghi, O. M.; Li, H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 1995, 117(41), 10401-10402.
Binnemans, K. Lanthanide-based luminescent hybrid materials. Chem. Rev. 2009, 109(9), 4283-4374.
Moore, E. G.; Samuel, A. P. S.; Raymond, K. N. From antenna to assay: lessons learned in lanthanide luminescence. Acc. Chem. Res. 2009, 42(4), 542-552.
Cho, W.; Lee, H. J.; Oh, M. Growth-controlled formation of porous coordination polymer particles. J. Am. Chem. Soc. 2008, 130(50), 16943-16936.
Chen, B.; Wang, L.; Zapata, F.; Qian, G.; Lobkovsky, E. B. A luminescent microporous metal−organic framework for the recognition and sensing of anions. J. Am. Chem. Soc. 2008, 130(21), 6718-6719.
Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O’Keeffe, M.; Yaghi, O. M. Rod packings and metal−organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 2005, 127(5), 1504-1518.
Xiao, Y.; Wang, L.; Cui, Y.; Chen, B.; Zapata, F.; Qian, G. Molecular sensing with lanthanide luminescence in a 3D porous metal-organic framework. J. Alloys Compd. 2009, 484(1-2), 601-604.
Anokhina, E. V.; Vougo-Zanda, M.; Wang, X.; Jacobson, A. J. In(OH)BDC•0.75BDCH2 (BDC = Benzenedicarboxylate), a hybrid inorganic−organic vernier structure. J. Am. Chem. Soc. 2005, 127(43), 15000-15001.
Centrone, A.; Yang, Y.; Speakman, S.; Bromberg, L.; Rutledge, G. C.; Hatton, T. A. Growth of metal−organic frameworks on polymer surfaces. J. Am. Chem. Soc. 2010, 132(44), 15687-15691.
Liu, B.; Ma, M.; Zacher, D.; Betard, A.; Yusenko, K.; Metzler-Nolte, N.; Wöll, C.; Fischer, R. A. Chemistry of SURMOFs: layer-selective installation of functional groups and post-synthetic covalent modification probed by fluorescence microscopy. J. Am. Chem. Soc. 2011, 133(6), 1734-1737.
Hermes, S.; Schröder, F.; Chelmowski, R.; Wöll, C.; Fischer, R. A. Selective nucleation and growth of metal−organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). J. Am. Chem. Soc. 2005, 127(40), 13744-13745.
Ghasemi-Varnamkhasti, M.; Mohtasebi, S. S.; Siadat, M. Biomimetic-based odor and taste sensing system to food quality and safety characterization: an overview on basic principles and recent achievements. J. Food. Eng. 2010, 100(3), 377-387.
Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402(6759), 276-279.
Liu, B.; Ma, M.; Zacher, D.; Bétard, A.; Yusenko, K.; Metzler-Nolte, N.; Wöll, C.; Fischer, F. A. Chemisrty of SURMOFs: layer-selective installation of functional groups and post-synthetic covalent modification probed by fluorescence microscpoy. J. Am. Chem. Soc. 2011, 133(6), 1734-1737.
Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastré, J. Metal-organic frameworks-prospective industrial applications. J. Mater. Chem. 2006, 16(7), 626-637.
Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Duyne, R. P. V.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112(2), 1105-1125.
Liu, W.; Jiao, T.; Li, Y.; Liu, Q.; Tan, M.; Wang, H.; Wag, L. Lanthanide coordination polymers and their Ag+-modulated fluorescence. J. Am. Chem. Soc. 2004, 126(8), 2280-2281.
Chen, B.; Wang, L.; Xiao, Y.; Fronczek, F. R.; Xue, M.; Cui, Y.; Qian, G. A luminescent metal–organic framework with Lewis basic pyridyl sites for the sensing of metal ions. Angew. Chem. Int. Ed. 2009, 48(3), 500-503.
Lu, W.-G.; Jiang, L.; Feng, X.-L.; Lu, T.-B. Three-dimensional lanthanide anionic metal−organic frameworks with tunable luminescent properties induced by cation exchange. Inorg. Chem. 2009, 48(15), 6997-6999.
Wong, K. L.; Law, G. L.; Yang, Y. Y.; Wong, W. T. A highly porous luminescent terbium–organic framework for reversible anion sensing. Adv. Mater. 2006, 18(8), 1051-1054.
Xu, H.; Xiao, Y.; Rao, X.; Dou, Z.; Li, W.; Cui, Y.; Wang, Z.; Qian, G. A metal-organic framework for selectively sensing of PO43− anion in aqueous solution. J. Alloys Compd. 2011, 509(5), 2552-2554.
Bai, Y.; He, G.-J.; Zhao, Y.-G.; Duan, C.-Y.; Dang, D.-B.; Meng, Q.-J. Porous material for absorption and luminescent detection of aromatic molecules in water. Chem. Commun. 2006, (14), 1530-1532.
Chen, B.; Yang, Y.; Zapata, F.; Lin, G.; Qian, G.; Lobkovsky, E. B. Luminescent open metal sites within a metal–organic framework for sensing small molecules. Adv. Mater. 2007, 19(13), 1693-1696.
Harbuzaru, B. V.; Corma, A.; Rey, F.; Jordá, J. L.; Ananias, D.; Carlos, L. D.; Rocha, J. A miniaturized linear pH sensor based on a highly photoluminescent self-assembled Europium(III) metal–organic framework. Angew. Chem. Int. Ed. 2009, 48(35), 6476-6479.
Fang, Q.-R.; Zhu, G.-S.; jin, Z.; Ji, Y.-Y.; Ye, J.-W.; Xue, M.; Yang, H.; Wang, Y.; Qiu, S.-L. Mesoporous metal–organic framework with rare etb topology for hydrogen storage and dye assembly. Angew. Chem., Int. Ed. 2007, 46(35), 6638-6642.
Yarmolinsky, D. A.; Zuker, C. S.; Ryba, N. J. P. Common sense about taste: From mammals to insects. Cell 2009, 139(2), 234-244.
Jain, H.; Panchal, R.; Pardhan, P.; Patel, H.; Pasha, T. Y. Electronic tongue: a new taste sensor. IJPSRR. 2010, 5(2), 91-96.
Ley, J. P. Masking bitter taste by molecules. Chem. Percept. 2008, 1(1), 58–77.
Winquist, F.; Lundstrӧm, I.; Wide, P. The combination of an electronic tongue and an electronic nose. Sensors and Actuators B. 1999, 58(1-3), 512-517.
Toko, K. A taste sensor. Meas. Sci. Technol. 1998, 9(12), 1919-1936.
Toko, K. Taste sensor. Sensors and Actuators B. 2000, 64(1-3), 205-215.
Stuetz, R. M.; Fenner, R. A.; Engin, G. Characterization of wastewater using an electronic nose. Wat. Res. 1999, 33(2), 442-452.
Lee, T.; Liu, Z. X.; Lee, H. L. A biomimetic nose by microcrystals and oriented films of luminescent porous metal-organic frameworks. Cryst. Growth Des. 2011, 11(9), 4146-4154.
Rieter, W. J.; Taylor, K. M. L.; Lin, W. Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. J. Am. Chem. Soc. 2007, 129 (32), 9852-9853.
Cho, W.; Lee, H. J.; Oh, M. Growth-controlled formation of porous coordination polymer particles. J. Am. Chem. Soc. 2008, 130(50), 16943-16936.
Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O’Keeffe, M.; Yaghi, O. M. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 2005, 127(5), 1504-1518.
Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent metal-organic frameworks. Chem. Soc. Rev. 2009, 38(5), 1330-1352.
Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112(2), 1126-1162.
Xiao, Y.; Wang, L.; Cui, Y.; Chen, B.; Zapata, F.; Qian, G. Molecular sensing with lanthanide luminescence in a 3D porous metal-organic framework. J. Alloys Compd. 2009, 484(1-2), 601-604.
Centrone, A.; Yang, Y.; Speakman, S.; Bromberg, L.; Rutledge, G. C.; Hatton, T. A. Growth of metal-organic frameworks on polymer surfaces. J. Am. Chem. Soc. 2010, 132(44), 15687-15691.
Scott, K. Taste recognition: food for thought. Neuron 2005, 48(3), 455-464.
Sugama, T.; Kukacka, L. E.; Carciello, N. Nature of interfacial interaction mechanisms bewteen polyacrylic acid macromolecules and oxide metal surfaces. J. Mater. Sci. 1984, 19(12), 4045-4056.
Wiśniewska, M.; Chibowski, S.; Urban, T. Adsorption and thermodynamic properties of the alumina–polyacrylic acid solution system. J. Colloid Interface Sci. 2009, 334(2), 146-152.
Akkahat, P.; Mekboonsonglarp, W.; Kiatkamjornwong, S.; Hoven, V. P.; Surface-grafted poly(acrylic acid) brushes as a precursor layer for biosensing applications: effect of graft density and swellability on the detection efficiency. Langmuir 2012, 28(11), 5302-5311.
Sarkar, D.; Somasundaran, P.; Conformational dynamics of poly(acrylic acid). A study using surface plasmon resonance spectroscopy. Langmuir 2004, 20(11), 4657-4664.
Nilsson, K. P. R.; Andresson, M. R.; Inganäs, O. Conformational transitions of a free amino-acid-functionalized polythiophene induced by different buffer system. J. Phys.: Condens. Matter 2002, 14(42), 10011-10020.
Kim, B.; Chen, L.; Gong, J.; Osada, Y. Titration behavior and spectral transitions of water-soluble polythiophene carboxylic acid. Macromolecules 1999, 32(12), 3964-3969.
McCullough, R. D.; Ewbank, P. C.; Loewe, R. S. Self-assembly and disassembly of regioregular, water soluble polythiophenes: chemoselective ionchromatic sensing in water. J. Am. Chem. Soc. 1997, 119(3), 633-634.
Indow, T. An application of the τ scale of taste: interaction among the four qualities of taste. Percept. Psychophys. 1969, 5(6), 347-351.
Chen, B.; Wang, L.; Zapata, F.; Qian, G.; Lobkovsky, E. B. A luminescent microporous metal-organic framework for the recognition and sensing of anions. J. Am. Chem. Soc. 2008, 130(20), 6718-6719.
Zacher, D.; Shekhah, O.; Wöll, C.; Fischer, R. A. Thin films of metal-organic frameworks. Chem. Soc. Rev. 2009, 38(5), 1418-1429.
Bétard, A.; Fischer, R. A. Metal-organic frameworks thin films: from fundamentals to applications. Chem. Rev. 2012, 112(2), 1055-1083.
Allendorf, M. D.; Bétard, A.; Fischer, R. A. In Metal-Organic Frameworks: Applications from Catalysis to Gas Storage; Farrusseng, D., Ed.; Wiley-VCH: Weinheim, 2011.
Gascon, J.; Kapteijn, F. Metal-organic framework membranes-high potential, bright future?. Angew. Chem. Int. Ed. 2010, 49(9), 1530-1532.