| 研究生: |
許嘉顯 Chia-hsien Hsu |
|---|---|
| 論文名稱: |
磁場對多電極電解水產氫之影響 The influence of magnetic field on the hydrogen production by multi-electrode water electrolysis |
| 指導教授: | 洪勵吾 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 電解水 、勞侖茲力 、磁流體動力學 、多電極 |
| 外文關鍵詞: | Water electrolysis, Lorenz force, Magnetohydrodynamic(MHD), multi-electrode |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用多組鎳電極,於氫氧化鉀電解液,進行水電解產氫,由恆電位儀、氣體質量流量計、高速攝影機與相機記錄所得到的數據資料,探討不同電壓值、電極間距與組數、電解液濃度,在加入磁場後,受到磁流體動力學(MHD)中勞侖茲力(Lorentz force)之影響,使電流值提升促進電解,而氣體產量皆會增加,並且使氣泡流場平均分散,降低阻抗促進電解反應。
恆電位儀搭配氣體流量計加入磁場後,在電極間距3mm,濃度25wt%,電壓3V時有最大體積流率為3.6 l/hr。再藉由電化學電解之觀念計算加磁場後產氣增加率、電功率增加率與能量效率,在電極間距3mm,電壓2.5V,單一電極組有最大產氣增加率為13.4%,電功率增加率為10.2%,在多電極組的能量效率皆有不錯的效果,在電極間距3mm,電壓2.5V,1組有最大值為92.14%。
關鍵字: 電解水、勞侖茲力、磁流體動力學(MHD) 、多電極
Multiple sets of nickel electrode were used in an electrolyte of potassium hydroxide to perform water electrolysis hydrogen production, Effects of different parameters, such as applied voltage, inter-electrode distance, number of electrode groups and concentration of electrolyte on the water electrolysis are investigated by the use of potentiostat, mass flow meter, high-speed camera.
By the adding of the magnetic field, the resulting Lorentz force will produce magnetohydrodynamic (MHD) convection and promotes electrolysis with more gas production. Gas bubbles disperse averagely in the electrolyte and the impedance is thus reduced. The maximum flow rate of 3.6 l / hr occurs as inter-electrode distance of 3mm, concentration of 25 wt%, and applied voltage of 3V with the addition of magnetic field. The increase of gas production rate, the increase of electric power rate, and the energy efficiency as the magnetic field is added are also estimated. With the addition of magnetic field, the maximum gas production rate is about 13.4%, electric power rate about 10.2%, and energy efficiency about 92.14%, for the single electrode group under parameters of inter-electrode distance 3mm, and applied voltage 2.5V. For multi-electrode groups, the gas production is increased, and the corresponding energy efficiency is slightly reduced only. It shows that the multi-electrode groups can be applied for the mass production of hydrogen.
Key words: Water electrolysis;Lorenz force;Magnetohydrodynamic (MHD);multi-electrode
[1]科學發展2006年3月,399期,68~75頁。
[2]陳維新著,能源概論第八版,高立出版社(2015)。
[3]D. Lj. Stojić, M. P. Marčeta, S. P. Sovilj and Š. S. Miljanić, “Hydrogen generation from water electrolysis – possibilities of energy saving,” International Journal of Power Sources, Vol.118, pp.315-319(2003).
[4]N. Nagai, M. Takeuchi, T. Kimura and T. Oka, ”Existence of optimum space between electrodes on hydrogen production by water electrolysis”, International Journal of Hydrogen Energy, Vol. 28, pp. 35-41(2003).
[5]S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umno and H. Tributsch, “Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting,” International Journal of hydrogen Energy, Vol.26, pp.653-659(2001).
[6]R. F. de Souza, J. C. Padilha, R. S. Gonçalves and J. Rault-Berthelot, “Dialkylimidazolium ionic liquids as electrolytes for hydrogen production from water electrolysis,” Electrochemistry Communications,Vol.8, pp.211-216(2006).
[7]M. P. M. Kaninski, D. P. Saponjic, V. M.Nikolic, D. L. Zugic, and G. S. Tasic, “Energy consumption and stability of the Ni-Mo electrodes for the alkaline hydrogen production at industrial conditions,” International Journal of hydrogen energy,Vol.36,pp.8864-8868(2011).
[8]V. M. Nikolic, G. S. Tasic, A. D. Maksic , D. P. Saponjic , S. M. Miulovic , and M. P. Marceta Kaninski, “Raising efficiency of hydrogen generation from alkaline water electrolysis - Energy saving,” Int J Hydrogen Energy, Vol 35,pp. 12369-12373, (2010).
[9]S. A. Grigoriev, P. Millet, S. V. Korobtsev, V. I. Porembskiy, M. Pepic, C. Etievant, C. Puyenchet and V. N. Fateev, “Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis,” International Journal of Hydrogen Energy, Vol.34, pp.5986-5991(2009).
[10]F. Marangio and M. Santarelli, and M. Cali, “Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production,” International Journal of Hydrogen Energy, Vol. 34, pp. 1143-1158.(2009).
[11]S. D. Li, C. C. Wang and C. Y. Chen, “Water electrolysis in the presence of an ultrasonic field,” Electrochimica Acta, Vol.54, pp. 3877-3883(2009).
[12]H. Matsushima, Y. Fukunaka and K. Kuribayashi, “Water electrolysis under microgravity: Part II. Description of gas bubble evolution phenomena,” Electrochimica Acta, Vol.51, pp.4190-4198(2006).
[13]M. Wang, Z. Wang and Z. Guo, “Water electrolysis enhanced by super gravity field for hydrogen production,” International Journal of Hydrogen Energy, Vol.35, pp. 3198-3205(2010).
[14]T. Iida, H. Matsushima and Y. Fukunaka,“Water Electrolysis under a magnetic Field,” Journal of The Electrochemical Society, Vol. 154, pp.112-115(2007).
[15]T. Weier, J. Huller, G. Gerbeth and F. Weiss, “Lorentz force influence on momentum and mass transfer in natural convection copper electrolysis”, Chemical Engineering Science, Vol 60, pp. 293 – 298.(2005).
[16]H. Matsushima, D. Kiuchi and Y. Fukunaka,“Measurement of dissolved hydrogen supersaturation during waterelectrolysis in a magnetic field,” Electrochimica Acta, Vol. 54 , pp. 5858-5862(2009).
[17]H. Matsushima, T. Iida and Y. Fukunaka, “Gas bubble evolution on transparent electrode during water electrolysis in a magnetic field,” Electrochimica Acta, Vol. 100, pp. 261-264(2013).
[18]J. A. Koza, S. Mühlenhoff, P. Żabiński, P. A. Nikrityuk, K. Eckert, M. Uhlemann, A. Gebert, T. Weier, L. Schultz and S. Odenbach, “Hydrogen evolution under the influence of a magnetic field,” Electrochimica Acta, Vol. 56, pp. 2665-2675(2011).
[19]M. Y. Lin, L. W. Hourng and C. W. Kuo, “The effect of magnetic force on hydrogen production efficiency in water electrolysis,” Int. J. Hydrogen energy, Vol 37, pp. 1311-1320(2011).
[20]M. Y. Lin and L. W. Hourng, “Effects of magnetic field and pulse potential on hydrogen production via water electrolysis,” International Journal of Energy Research, Vol. 38, pp. 106-116(2014).
[21]H. Zhang, G. Lin and J. Chen, “Evaluation and calculation on the efficiency of a water electrolysis system for hydrogen production,” Int J Hydrogen Energy, Vol 35, pp. 10851-10858(2010).
[22]K. Zeng and D. Zhang, “Recent progress in alkaline water electrolysis for hydrogen production and applications,” Progress in Energy and Combustion Science, Vol.36, pp.307-326(2010).
[23]J. Ivy, Summary of electrolytic hydrogen production: milestone completion report, National Renewable Energy Laboratory., Colorado, (2004).
[24]F. Guttman and O. J. Murphy, Modern Aspects of Electrochemistry. Plenum Press ,New York(1983).
[25]魚崎浩平,喜多英明同撰,黃忠良譯,基本電化學,復漢出版社(1983)。
[26]J. Koryta, W. Dvorak and L. Kavan, Principles of Electrochemistry Second Edition, John Wiley and Sons, New York(1993).
[27]田福助,電化學基本原理與應用,五洲出版社 (2004)。
[28]O. Darrigol, Electrodynamics from Ampère to Einstein, Oxford, [England]: Oxford University, p.327 (2000).
[29]張啟陽,電磁學,東華書局(1999)。
[30]H. D. Young, University Physics, 8th Ed., Addison-Wesley,(1992).
[31]J. M. Gras and P. Spiteri, “Corrosion of stainless steels and nickel based alloys for alkaline water electrolysis,” International Journal of Hydrogen Energy, Vol. 18, pp. 561-566 (1993).
[32]田中正三郎著、賴耿陽譯著,應用電化學,應用新科技-應用電化學,復漢出版社(1998)。
[33]P. Marčeta and D. L. Stojić, “Comparison of different electrode materials–energy requirements in the electrolytic hydrogen evolution process,” Journal of Power Sources, Vol. 157, pp. 758-764(2006).