跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳冠華
Kuan-Hua Chen
論文名稱: 最佳準則法於結構輕量化設計之應用
Application of Optimality Criteria to Minimum Weight Design of Structures
指導教授: 莊德興
Der-Shin Juang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 92
中文關鍵詞: 最佳準則法輕量化設計兩階段設計程序位移限制應力限制挫屈載重因子限制
外文關鍵詞: optimality criteria method, minimum weight design, two-stage design procedure, displacement constraints, stress constraints, buckling load factor constraint
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是採用兩階段的最佳準則(Optimality Criteria)設計程序來進行結構輕量化問題,限制條件包括位移、應力及挫屈載重因子等限制。進行設計之前,先以Fully Stressed Design(FSD)程序對含有應力限制的問題調整設計變數。兩階段的最佳準則法設計程序是在第一階段採用較大更新因子快速搜尋近似最佳解,並於第二階段藉由降低更新因子以減緩移動步幅,來找出較佳之輕量化設計結果。數個桁架與剛構架的設計例的輕量化設計結果顯示,本研究建議之兩階段設計程序具備快速而穩定收斂的特性,求解品質亦相當接近文獻的結果,甚至更佳。


    In this report, the minimum weight design of trusses and rigid frames by using a two-stage design procedure based on the optimality criteria method is studied. The behavior constraints considered in this study include the constraints on displacement, stress, and buckling load factor. In this study, the independent variables of a structure with stress constraints are adjusted by using the fully stressed design procedure first. Then, the variables are designed by using the two-stage design procedure. In the two-stage design procedure, a larger exponent of the recursive relation is used to search for a near optimal solution first, and a smaller exponent is then used in the second stage to slow down the moving velocity and to fine tune the solution quality. Several trusses and rigid frames studied in the literature are used to demonstrate the efficiency and the solution quality of the proposed design procedures. Comparative results show that the proposed optimality criteria method can efficiently find good quality solutions for the designed structures.

    摘要 I 英文摘要 II 目錄 III 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 5 1.3 研究方法與內容 8 第二章 最佳準則法 10 2.1 輕量化設計問題之數學模式 10 2.2 OC法理論回顧 11 2.3 終止條件 14 2.4 敏感度分析(SENSITIVITY ANALYSIS) 15 2.4.1 位移敏感度 15 2.4.2 應力敏感度 16 2.4.3 挫屈敏感度 19 2.5 FULLY STRESSED DESIGN(FSD) 22 2.6 比例縮放(UNIFORM SCALING OPERATION) 23 2.7 本文的演算程序 24 第三章 更新因子值與FSD之影響 26 3.1 前言 26 3.2 更新因子修正 29 3.3 測試算例 31 3.3.1 10桿平面桁架 31 3.3.2 50桿平面桁架 36 3.4 FSD之影響 41 3.5 討論 42 第四章 數值算例與討論 44 4.1 簡介 44 4.2 數值算例 45 4.2.1 2桿平面桁架 45 4.2.2 4桿空間桁架 47 4.2.3 4桿空間桁架 49 4.2.4 10桿平面桁架 52 4.2.5 22桿空間桁架 55 4.2.6 25桿空間桁架 58 4.2.7 72桿空間桁架 62 4.2.8 200桿平面桁架 66 4.2.9 12桿平面構架 72 4.2.10 15桿平面桁架 79 4.3 討論 82 第五章 結論與建議 84 5.1 結論與建議 84 5.2 未來研究方向 86 參考文獻 88

    [1] Maxwell, J.C., Scientific Papers, Vol.2, pp. 175(1869).
    [2] Michell, A.G.M., “The limits of economy of material in framed structures,” Phil. Mag. (series 6), Vol. 8, pp.589-597 (1904).
    [3] Svanberg, K., “Optimization of Geometry in Truss Design,” Computer Methods in Applied Mechanics and Engineering, Vol. 28, pp. 63-80(1981).
    [4] Kirsch, U., Structural optimizations, fundamentals and applications, Springer-Verlag, Heidelbrg (1993).
    [5] Gallagher, R.H., “Fully-stressed design,” In Optimum Structural Design, Theory and Applications, Chapter 3, R. H. Gallagher and O.C. Zienkiewicz(Eds.) John Wiley and Sons (1973).
    [6] Venkayya, V. B., “Design of Optimum Structure,” Computers and Structures, Vol. 1, pp. 265-309 (1971).
    [7] Khot, N. S., Venkayya, V. B., and Berke, L., “Optimum Design of Composite Structures with Stress and Displacement Constraints,” AIAA 13th Aerospace Sciences Meeting, Pasadena, California, USA, Vol. 2, No. 28, pp.75-141 (1975).
    [8] Gellatly, R. A., and Berke, L., “Optimal Structural Design,” Air Force Flight Dynamics Lab, Report No. AFFDL-TR-70-165 (1971).
    [9] Venkayya, V. B., Khot, N. S., and Berke, L., “Application of Optimality Criteria Approaches on Automated Design of Large Practical Structures,” 2nd Symposium on Structural Optimization, pp. 3.1-3.19 (1973).
    [10] Taig, I. C., and Kerr, R. I., “Optimization of Aircraft Structures with Multiple Stiffness Requirements,” Proc. 2nd AGARD Symp. Struct. Opt., AGARD CP-123, Paper 16, pp. 16.1-16.4 (1973).
    [11] Khot, N. S., Venkayya, V. B., and Berke, L., “Optimum Structural Design with Stability Constraints,” International Journal for Numerical Methods In Engineering, Vol. 10, pp. 1097-1114 (1976).
    [12] Dobbs, M. W., and Nelson, R. B., “Application of Optimality Criteria to Automated Structural Design,” AIAA Journal, Vol. 14, pp. 1436-1443 (1976).
    [13] Rizzi, P., “Optimization of Multi-constrained Structures Based on Optimality Criteria,” AIAA/ASME/SAE 17th Structures, Structural Dynamics, and Materials Conference, King of Prussia (1976).
    [14] Khan, M. R., Willmert K. D., and Thornton, W. A., “An Optomality Criterion Method for Large-Scale Structures,” AIAA Journal, Vol. 17, No. 7, pp. 753-761 (1979).
    [15] Lin, C. C., and Liu, I. W., “Optimal Design Based on Optimality Criterion for Frame Structures Including Buckling Constraint,” Computers and Structures, Vol. 31, No. 4, pp. 535-544 (1989).
    [16] Lin, C. C., and Liu, I. W., “Optimal design for plate structures with buckling constraints,” AIAA Journal, Vol. 28, No. 5, pp. 951-953 (1990).
    [17] Arora, J. S., Introduction to Optimum Design, McGraw-Hill International Editions (1989)
    [18] Kirsch, U., Optimum Structural Design: Concepts, Methods, and Applications, New York: McGraw-hill (1981).
    [19] Przemieniecki, J. S., Theory of Matrix Structural Analysis, McGraw-HILL Book Company, New York (1979).
    [20] Zacharopoulos, A. Willmert, K. D., and Khan, M. R., “An Optimality Criterion Method for Structures with Stress, Displacement and Frequency Constraints,” Computers and Structures, Vol. 19, No. 4, pp. 621-629 (1984).
    [21] Schmit, L. A., and Miura, H., “Approximation Concepts for Efficient Structural Synthesis,” NASA CR-2552 (1976).
    [22] Schmit, L. A., and Farshi, B., “Some Approximation Concepts for Structural Synthesis,” AIAA Journal, Vol. 12, pp. 692-699 (1974).
    [23] Kiusalas, L., and Reddy, G. B., “DESAP2-a Structural Design Program With Stress and Buckling Constraints, Vol. Ⅱ: sample problems,” NASA CR-2798 (1977).
    [24] Sedaghati, R., and Tabarrok, B., “Optimum design of truss structures undergoing large deflections subject to a system stability constraint,” International Journal for Numerical Methods in Engineering, Vol. 48, Issue 3, pp. 421-434 (2000).
    [25] Sheu, C. Y., and Schmit, L. A., “Minimum Weight Design of Elastic Redundant Trusses under Multiple Static Load Conditions,” AIAA Journal, Vol. 10, No. 2, pp. 155-162(1972).
    [26] Berke, L., and Khot, N. S., “Use of Optimality Criteria Methods for Large Scale Systems,” AGARD Lecture Series No. 70 on Structural Optimization, AGARD-LS-70, pp. 1-29(1974).
    [27] 謝元裕,「結構穩定學」,文笙書局,台北市 (1999)。
    [28] Austrell, P. E., Dahlblom, O., and Lindemann, J., “CALFEM: A finite element toolbox, Version 3.4,” Structural Mechanics (2004).
    [29] Khan, M. R., “Optimality Criterion Techniques Applied to Frames Having General Cross-Sectional Relationships,” AIAA Journal, Vol. 22, No. 5, pp. 669-676 (1984).

    QR CODE
    :::