| 研究生: |
鄭兆軒 Zhao-Xuan Zheng |
|---|---|
| 論文名稱: |
電場誘導高導電度TiO2奈米材料高分子複合薄膜於鋰離子電池的應用 |
| 指導教授: |
諸柏仁
Po-Jen Chu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 固態電解質 |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋰離子電池是廣泛使用在電子產品當中的電池,是重要的儲能裝置之一,在發展過程中為了改善安全性及耐用性,固態高分子電解質薄膜成為重要的議題之一。固態高分子電解質雖然有許多的優點,但在離子導電性以及與電極之間的界面相容性還是比傳統的液體電解質差,因此致力於提升離子導電度以及界面相容性就成為固態高分子電解質主要發展的目標。
在本實驗中,我們研究一款新穎的固態電解質,利用離子液體[EMIM]+[FSI]-和TiO2奈米顆粒添加到PVDF-HFP及PMMA混摻高分子薄膜中,並且在浸泡離子液體,在電場極化下,橢圓的TiO2奈米顆粒在高分子非結晶區有序地被誘導成順向,有利於離子更直接的在薄膜中傳導。此外高極性的TiO2奈米顆粒可以有效的減弱離子液體的鍵結,釋放出鋰離子提供更高的運輸程度。因此導電度在室溫下到達1.16×10-3 S/cm,在TiO2奈米顆粒添加至3%並且在80oC下導電度可到達4.52×10-3 S/cm。
儘管此在室溫下的導電度還是不高,但是在電場極化產生的有序排列以及來自TiO2奈米顆粒高介電常數下建立了有利於離子液體傳導離子的機制,結合了電極的PvDF/PMMA黏合性能,介面電阻有顯著的下降,發現使用包含離子液體和TiO2顆粒的固態高分子電解質的鋰電池半電池以及磷酸鋰鐵作為陰極,優異且穩定的循環容量在100圈充電和放電循環後在0.2C下仍然保持在140mAh/g。
Lithium-ion battery is an important energy storage device, widely used in electronic products. In order to improve the durability and safety, solvent free polymer electrolyte becomes one of the critical components to meet the growing challenge. Although with many promising material advantages, solid polymer electrolyte is far inferior to the liquid electrolyte in ion conductivity. A second drawback is the huge interface resistance between the electrolyte and the electrodes, due to the voids created by incomplete adhesion of the two solids.
In this paper, we report a novel solid polymer electrolytes where ionic liquid [EMIM] + [FSI] - and TiO2 nanoparticles were impregnate with polymer blend of PVDF-HFP and PMMA. Under electric field poling, the oval shape TiO2 nano-particles is re-oriented with preferentially ordered arrangement in non-crystalline regions of the polymer blends which served to facilitate fluent ion migration induced in more straight forward manner. Furthermore, high dielectric constant of TiO2 nanoparticles weakens the ionic force within ionic liquid which liberates lithium ion for better transport. Both factors contribute to appreciable increase of ionic conductivity of 1.16 × 10 -3 S / cm at room temperature. In the composite electrolyte samples, ion conductivity of 4.52 × 10 -3 S / cm at 80 °C can be achieved with addition of 3% TiO2 nanoparticles.
Although the mobility of the polymer is still not high at room temperature, the ordered arrangement created by E-F poling, and the high dielectric constants originated from the nano particles establishes favorable ionic liquid conduction mechanism. In combination with the superb PVDF/PMMA adhesion properties with the electrodes, the interface resistance is substantially reduced. Lithium battery half cells using the solid polymer electrolytes containing ionic liquids and TiO2 particles, with lithium iron phosphate as cathode, show stable cyclic capacity maintain at 140 mAh / g at 0.2 C discharge rate, after 100 charged and discharge cycle.
1. Harry, K.J., et al., Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nature materials, 2014. 13(1): p. 69.
2. Homewood, P., Fossil Fuels and Emissions Forecast To Continue To Rise – BP Energy Outlook. https://notalotofpeopleknowthat.wordpress.com/2018/02/22/fossil-fuels-and-emissions-forecast-to-continue-to-rise-bp-energy-outlook/, 2018.2.22.
3. Yang, M. and J. Hou, Membranes in lithium ion batteries. Membranes, 2012. 2(3): p. 367-383.
4. Hausbrand, R., et al., Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches. Materials Science and Engineering: B, 2015. 192: p. 3-25.
5. Wang, Q., et al., Thermal runaway caused fire and explosion of lithium ion battery. Journal of power sources, 2012. 208: p. 210-224.
6. Odziemkowski, M. and D. Irish, An Electrochemical Study of the Reactivity at the Lithium Electrolyte/Bare Lithium Metal Interface I. Purified Electrolytes. Journal of The Electrochemical Society, 1992. 139(11): p. 3063-3074.
7. Tarascon, J.-M., et al., Performance of Bellcore's plastic rechargeable Li-ion batteries. Solid State Ionics, 1996. 86: p. 49-54.
8. Galiński, M., A. Lewandowski, and I. Stępniak, Ionic liquids as electrolytes. Electrochimica acta, 2006. 51(26): p. 5567-5580.
9. Rajendran, S., O. Mahendran, and T. Mahalingam, Thermal and ionic conductivity studies of plasticized PMMA/PVdF blend polymer electrolytes. European polymer journal, 2002. 38(1): p. 49-55.
10. Long, L., et al., Polymer electrolytes for lithium polymer batteries. Journal of Materials Chemistry A, 2016. 4(26): p. 10038-10069.
11. Song, J., Y. Wang, and C.C. Wan, Review of gel-type polymer electrolytes for lithium-ion batteries. Journal of Power Sources, 1999. 77(2): p. 183-197.
12. Dias, F.B., L. Plomp, and J.B. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries. Journal of Power Sources, 2000. 88(2): p. 169-191.
13. Gadjourova, Z., et al., Ionic conductivity in crystalline polymer electrolytes. Nature, 2001. 412(6846): p. 520.
14. Stephan, A.M., et al., Poly (vinylidene fluoride-hexafluoropropylene)(PVdF-HFP) based composite electrolytes for lithium batteries. European Polymer Journal, 2006. 42(8): p. 1728-1734.
15. Rani, M.U., R. Babu, and S. Rajendran, Conductivity study on PVDF-HFP/PMMA electrolytes for lithium battery applications. International Journal of ChemTech Research, 2013. 5(4): p. 1724-1732.
16. FENTON, D., Complexes of Alkali Metal Ions with Poly (etylene oxide). Polymer, 1973. 14: p. 589.
17. Xu, X., et al., High lithium ion conductivity glass-ceramics in Li2O–Al2O3–TiO2–P2O5 from nanoscaled glassy powders by mechanical milling. Solid State Ionics, 2006. 177(26-32): p. 2611-2615.
18. Yao, X., et al., All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science. Chinese Physics B, 2015. 25(1): p. 018802.
19. Fergus, J.W., Ceramic and polymeric solid electrolytes for lithium-ion batteries. Journal of Power Sources, 2010. 195(15): p. 4554-4569.
20. Fu, X., et al., Inorganic and organic hybrid solid electrolytes for lithium-ion batteries. CrystEngComm, 2016. 18(23): p. 4236-4258.
21. Knauth, P., Inorganic solid Li ion conductors: An overview. Solid State Ionics, 2009. 180(14-16): p. 911-916.
22. Meyer, W.H., Polymer electrolytes for lithium‐ion batteries. Advanced materials, 1998. 10(6): p. 439-448.
23. Bachman, J.C., et al., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chemical reviews, 2015. 116(1): p. 140-162.
24. Ramesh, S., A. Yahaya, and A. Arof, Miscibility studies of PVC blends (PVC/PMMA and PVC/PEO) based polymer electrolytes. Solid State Ionics, 2002. 148(3-4): p. 483-486.
25. Subramania, A., N.K. Sundaram, and G.V. Kumar, Structural and electrochemical properties of micro-porous polymer blend electrolytes based on PVdF-co-HFP-PAN for Li-ion battery applications. Journal of power sources, 2006. 153(1): p. 177-182.
26. Ding, Y., et al., The ionic conductivity and mechanical property of electrospun P (VdF-HFP)/PMMA membranes for lithium ion batteries. Journal of membrane science, 2009. 329(1-2): p. 56-59.
27. Nunes-Pereira, J., C. Costa, and S. Lanceros-Méndez, Polymer composites and blends for battery separators: state of the art, challenges and future trends. Journal of Power Sources, 2015. 281: p. 378-398.
28. Xie, H., et al., PVDF-HFP composite polymer electrolyte with excellent electrochemical properties for Li-ion batteries. Journal of Solid State Electrochemistry, 2008. 12(11): p. 1497-1502.
29. Tiwari, V. and G. Srivastava, Effect of thermal processing conditions on the structure and dielectric properties of PVDF films. Journal of Polymer Research, 2014. 21(11): p. 587.
30. Martins, P., A. Lopes, and S. Lanceros-Mendez, Electroactive phases of poly (vinylidene fluoride): determination, processing and applications. Progress in polymer science, 2014. 39(4): p. 683-706.
31. Rajendran, S., O. Mahendran, and R. Kannan, Lithium ion conduction in plasticized PMMA–PVdF polymer blend electrolytes. Materials chemistry and physics, 2002. 74(1): p. 52-57.
32. Brown, H., et al., Effects of a diblock copolymer on adhesion between immiscible polymers. 1. Polystyrene (PS)-PMMA copolymer between PS and PMMA. Macromolecules, 1993. 26(16): p. 4155-4163.
33. Lin, D.-J., C.-L. Lin, and S.-Y. Guo, Network Nano-Porous Poly (vinylidene fluoride-co-hexafluoropropene) Membranes by Nano-Gelation Assisted phase Separation of Poly (vinylidene fluoride-co-hexafluoropropene)/Poly (methyl methacrylate) Blend Precursor in Toluene. Macromolecules, 2012. 45(21): p. 8824-8832.
34. Seki, S., et al., Highly reversible lithium metal secondary battery using a room temperature ionic liquid/lithium salt mixture and a surface-coated cathode active material. Chemical Communications, 2006(5): p. 544-545.
35. Balducci, A., et al., High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte. Journal of Power Sources, 2007. 165(2): p. 922-927.
36. De Souza, R.F., et al., Room temperature dialkylimidazolium ionic liquid-based fuel cells. Electrochemistry Communications, 2003. 5(8): p. 728-731.
37. Wang, P., et al., Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. Journal of the American Chemical Society, 2003. 125(5): p. 1166-1167.
38. Li, C., et al., Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresource technology, 2010. 101(13): p. 4900-4906.
39. Yang, P., et al., Characterization and properties of ternary P (VdF-HFP)-LiTFSI-EMITFSI ionic liquid polymer electrolytes. Solid State Sciences, 2012. 14(5): p. 598-606.
40. MacFarlane, D.R., et al., Energy applications of ionic liquids. Energy & Environmental Science, 2014. 7(1): p. 232-250.
41. Huddleston, J.G., et al., Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green chemistry, 2001. 3(4): p. 156-164.
42. Chaurasia, S., R. Singh, and S. Chandra, Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid,[BMIM][BF4]. The Journal of Physical Chemistry B, 2013. 117(3): p. 897-906.
43. Ye, Y.-S., J. Rick, and B.-J. Hwang, Ionic liquid polymer electrolytes. Journal of Materials Chemistry A, 2013. 1(8): p. 2719-2743.
44. Wu, C., et al., Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. The Journal of Physical Chemistry B, 2006. 110(36): p. 17806-17812.
45. Ray, P.C., Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chemical reviews, 2010. 110(9): p. 5332-5365.
46. Zhou, Z.-Y., et al., Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chemical Society Reviews, 2011. 40(7): p. 4167-4185.
47. Walkey, C.D., et al., Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. Journal of the American Chemical Society, 2012. 134(4): p. 2139-2147.
48. Weston, J. and B. Steele, Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes. Solid State Ionics, 1982. 7(1): p. 75-79.
49. Ohta, N., et al., Enhancement of the High‐Rate Capability of Solid‐State Lithium Batteries by Nanoscale Interfacial Modification. Advanced Materials, 2006. 18(17): p. 2226-2229.
50. Chiang, C.-Y., M.J. Reddy, and P.P. Chu, Nano-tube TiO2 composite PVdF/LiPF6 solid membranes. Solid State Ionics, 2004. 175(1-4): p. 631-635.
51. Cao, J., et al., In situ prepared nano-crystalline TiO 2–poly (methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. Journal of Materials Chemistry A, 2013. 1(19): p. 5955-5961.
52. Palmero, P., Structural ceramic nanocomposites: a review of properties and powders’ synthesis methods. Nanomaterials, 2015. 5(2): p. 656-696.
53. Srivastava, S., et al., 25th anniversary article: polymer–particle composites: phase stability and applications in electrochemical energy storage. Advanced Materials, 2014. 26(2): p. 201-234.
54. Capiglia, C., et al., Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly (ethylene oxide)(PEO)-based polymer electrolytes. Solid State Ionics, 1999. 118(1-2): p. 73-79.
55. Forsyth, M., et al., The effect of nano-particle TiO2 fillers on structure and transport in polymer electrolytes. Solid State Ionics, 2002. 147(3-4): p. 203-211.
56. Pitawala, H., M. Dissanayake, and V. Seneviratne, Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO) 9LiTf. Solid State Ionics, 2007. 178(13-14): p. 885-888.
57. Croce, F., L. Settimi, and B. Scrosati, Superacid ZrO2-added, composite polymer electrolytes with improved transport properties. Electrochemistry communications, 2006. 8(2): p. 364-368.
58. Cong, H., et al., Carbon nanotube composite membranes of brominated poly (2, 6-diphenyl-1, 4-phenylene oxide) for gas separation. Journal of Membrane Science, 2007. 294(1-2): p. 178-185.
59. Sun, J., et al., Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells. Cell biology and toxicology, 2011. 27(5): p. 333-342.
60. Badwal, S., Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity. Solid State Ionics, 1992. 52(1-3): p. 23-32.
61. Wegener, M., et al., Ferroelectric polarization in stretched piezo-and pyroelectric poly (vinylidene fluoride-hexafluoropropylene) copolymer films. Journal of applied physics, 2002. 92(12): p. 7442-7447.
62. Choi, J.-H., et al., Network structure and strong microphase separation for high ion conductivity in polymerized ionic liquid block copolymers. Macromolecules, 2013. 46(13): p. 5290-5300.
63. Liu, W., et al., Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nature energy, 2017. 2(5): p. 17035.
64. Wegener, M., Electrical Poling of Polymers. https://www.uni-potsdam.de/u/physik/fprakti/ANLEIF10.pdf, 2002.