跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉韋佟
Wei-Tong Ye
論文名稱: 五元輕量化富鈦高熵合金機械性質及熱處理條件探討
指導教授: 鄭憲清
Shian-Ching Jang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 116
中文關鍵詞: 五元合金輕量化均質化
外文關鍵詞: mechanical property, homogenization heat treatment, quinary alloy
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去十幾年,大部分的高熵合金研究主要著重在多元等量的合金組成上,且已知合金系列密度偏高(> 8 g/cm3)。為達到輕量化目的,本研究將探討以五元Ti60AlX(NbVCr) 40-x系列合金為基礎,藉由調整鋁元素含量觀察機械性質及微結構趨勢,同步探討不同熱處理條件後機械性質的變化。
    本研究選取Ti60Alx(NbVCr) 40-x (X = 6-18 at.%)詳細合金成分如下:Ti60Al6(NbVCr)34、Ti60Al8(NbVCr)32、Ti60Al10(NbVCr)30、Ti60Al12(NbVCr)28、Ti60Al18(NbVCr)22,以電弧融煉製備鑄錠後再以墜落式鑄造製備樣品,根據XRD結果顯示,上述五種五元高熵合金其微結構皆為單一BCC相;隨著Al含量增加密度會逐漸下降;硬度值由Ti60Al6(NbVCr)34的311 Hv上升至Ti60Al18(NbVCr)22的399 Hv;壓縮試驗的降伏強度由Ti60Al6(NbVCr)34的973 Mpa上升至Ti60Al18(NbVCr)22的1269 MPa;拉伸試驗中Ti60Al18(NbVCr)22並無延展性,為脆斷材料,但降伏強度還是由Ti60Al6(NbVCr)34的895 Mpa上升至Ti60Al12(NbVCr)28的960 MPa,顯示Al元素的多寡對合金整體機械性質有顯著的影響。在本研究中嘗試以800ºC - 1000ºC、時間分別6小時、12小時、24小時進行熱處理,隨著熱處理時間越長,降伏強度越高、延展性越低,其中Ti60Al12(NbVCr) 28均質化熱處理溫度900ºC、24小時,其降伏強度雖可達1048 MPa但延展性為3%。
    透過不同Al含量五元高熵合金熱處理條件工作窗的建立,Ti60AlX(NbVCr) 40-x系列合金可以根據不同的應用需求來調整其機械性質,亦可應用到其他合金系列的調控上藉以達到更好的應用。


    Over the past decade, high-entropy alloys caught attention due to their unique alloy design and properties. Most of high-entropy alloys (HEAs) are composed of equal-ratio transition elements, and it led to high density (> 8 g/cm3). In this study, the effect of Al on the evolution of microstructure and mechanical properties of light-weight Ti60AlX(NbVCr) 40-x alloy in the as-cast condition and after heat treatment will be investigated. The resulting alloys are Ti60Al6(NbVCr)34, Ti60Al8(NbVCr)32, Ti60Al10(NbVCr)30, Ti60Al12(NbVCr)28, and Ti60Al18(NbVCr)22. These alloys are denoted as Al6, Al8, Al10, Al12, and Al18, respectively.
    All samples were produced by vacuum arc melting (VAM) and drop casting. The XRD results reveal that the as-cast samples are BCC structured. The Hv hardness of the as-cast sample exhibited an increasing trend with increasing Al content, from 311 Hv of Al6 to 399 Hv of Al18. The compressive yield strength increased from 973 MPa of Al6 to 1269 MPa of Al18, and even, the tensile yield strength increase from 895 MPa of Al6 to 960 MPa of Al12. Unfortunately, the as-cast Al18 alloys did not present ductile property.
    After heat treatment at 900ºC for 6, 12 and 24 h, all annealed samples exhibit slightly higher strength, but siginificantly decrease in ductility. At noted that all became more brittle at 900ºC for 24 h.
    These light-weight Ti60AlX(NbVCr) 40-x alloys demonstrated excellent tensile ductility in the as-cast condition. With high specific strength and ductility, these alloys are promising in the application of energy and transportation industries.

    摘要 i Abstract ii 致謝 iii 總目錄 iv 表目錄 vii 圖目錄 viii 第一章 緒論 1 1-1前言 1 1-2研究目的 1 第二章 文獻回顧 3 2-1高熵合金之發展 3 2-1-1高熵合金定義 3 2-2 高熵合金之固溶體形成條件 4 2-3 高熵合金四大效應[13] 6 2-3-1晶格應變效應 6 2-3-4雞尾酒效應 7 2-3-1高熵效應 7 2-3-3延遲擴散效應 9 2-4 高熵合金之特性 10 2-5 機械行為之影響因素 11 2-5-2固溶強化 11 2-5-1晶體結構 12 2-6 高熵合金之成分設計 13 2-6-1非等量成分設計低密度高熵合金 13 第三章 實驗方法與步驟 19 3-1 合金設計之相關參數計算 19 3-2 高熵合金試片製備 19 3-2-1 合金成分配製 19 3-2-2 合金製備 20 3-3 合金密度量測 20 3-4 高熵合金微觀組織分析 21 3-4-1 X光繞射儀(XRD) 光學顯微鏡(Optical Microscopy) 21 3-4-2 X光繞射儀(XRD) 21 3-4-3 掃描式電子顯微鏡(SEM) 22 3-4-5 電子背向散射繞射(EBSD) 22 3-4-6 電子探針顯微分析儀(EPMA) 23 3-5 熱性質分析 23 3-5-1熱示差掃描熱量分析(DSC) 23 3-5-2均質化熱處理 23 3-6 機械性質分析 24 3-6-1試片製作 24 3-6-2維氏硬度分析 24 3-6-3壓縮測試分析 25 3-6-4拉伸測試分析 25 3-6-5 耐磨耗分析 26 第四章 結果與討論 39 4-1 合金成份設計 39 4-1-1合金選擇以及固溶體之相關參數計算 39 4-1-2成分分析 39 4-1-3 X-ray繞射分析 40 4-1-4 晶格常數 40 4-1-5 合金密度 40 4-2 熱處理前的微觀組織分析 41 4-3 熱處理前機械性質 42 4-3-1 硬度分析 42 4-3-2 壓縮測試 42 4-3-3 拉伸測試 42 4-4 均質化熱處理溫度之選擇 43 4-5均質化熱處理後的微觀組織分析 44 4-5-1 X-ray繞射分析 44 4-5-2光學顯微鏡(OM)觀察合金試片之表面形貌 45 4-5-3背向散射電子繞射技術(EBSD)觀察合金試片之晶粒變化 45 4-5-4掃描式電子顯微鏡(SEM)觀察合金試片之表面形貌 46 4-6均質化熱處理後的機械性質分析 47 4-6-1 硬度測試結果 47 4-6-2 拉伸測試結果 47 4-6-3 硬度測試結果(900ºC不同時間) 49 4-6-4 壓縮測試結果 49 4-7 磨耗分析 50 第五章 結論 94 第六章 參考文獻 95

    [1] ASM International. Handbook Committee, “Properties and Selection : Irons, Steels, and High-Performance Alloys”, Vol. 1, Materials Park, OH : ASM International, 1990.
    [2] ASM International. Handbook Committee, “Properties and Selection: Nonferrous Alloys and Special-Purpose Materials”, Vol. 2, Materials Park, OH : ASM International, 1990.
    [3] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau and S. Y. Chang, “Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes”, ADVANCED ENGINEERING MATERIALS, Vol. 6, pp. 299-303, 2004.
    [4] X. Yang, Y. Zhang and P. K. Liaw, “Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys”, Procedia Engineering, Vol. 36, pp. 292-298, 2012.
    [5] O. N. Senkov, J. M. Scott, S. V. Senkova, D. B. Miracle, C. F. Woodward, “Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy”, Journal of Alloys and Compounds, Vol. 509, pp. 6043-6048, 2011.
    [6] L. Lilensten, J. Couzinié, L. Perrière, J. Bourgon, N. Emery and I. Guillot, “New structure in refractory high-entropy alloys”, Materials Letters, Vol. 132, pp.123-125.
    [7] B. Cantor, I. T. H. Chang, P. Knight and A. J. B. Vincent, “Microstructural development in equiatomic multicomponent alloys”, Materials Science and Engineering A, Vols. 375-377, pp. 213-218, 2004.
    [8] Y. Deng, C. C. Tasan, K.G. Pradeep, H. Springer, A. Kostka and D. Raabe, “Design of a twinning-induced plasticity high entropy alloy”, Acta Materialia, Vol. 94, pp.124-133, 2015.
    [9] C. C. Tasan, Y. Deng, K. G. Pradeep, M. J. Yao, H. Springer and D. Raabe, “Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System”, The Minerals, Metals & Materials Society, Vol. 66, pp. 1993-2001, 2014.
    [10] M. J. Yao, K. G. Pradeep, C. C. Tasan and D. Raabe, “A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility”, Scripta Materialia, Vols. 72-73, pp. 5-8, 2014.
    [11] K. G. Pradeep, C. C. Tasan, M. J. Yao, Y. Deng, H. Springer and D. Raabe, “Non-equiatomic High entropy alloys: Approach towards rapid alloy screening and property-oriented design”, Author’s Accepted Manuscript, Vol. 648, pp. 183-192, 2015.
    [12] D. C. Ma, M. J. Yao, K. G. Pradeep, C. C. Tasan, H. Springer and D. Raabe, “Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys”, Acta Materialia, Vol. 98, pp. 288-296, 2015.
    [13] 葉均蔚, 高熵合金的發展, 華岡工程學報, Vol. 27, pp. 1-18, 2003.
    [14] Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen and P. K. Liaw, “Solid-Solution Phase Formation Rules forMulti-component Alloys”, ADVANCED ENGINEERING MATERIALS, Vol. 10, pp. 534-538, 2008.
    [15] X. Yang, Y. Zhang, “Prediction of high-entropy stabilized solid-solution in multi-component alloys”, Materials Chemistry and Physics, Vol. 132, pp. 233-238, 2012.
    [16] S. Guo, C. T. Liu, “Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase”, Progress in Natural Science: Materials International, Vol. 21, pp. 433-446, 2011.
    [17] A. Takeuchi and A. Inoue, “Quantitative evaluation of critical cooling rate for metallic glasses”, Materials Science and Engineering: A, Vols. 304-306, pp.446-451, 2001.
    [18] A. R. Miedema, P. F. de Châtel and F. R. de Boer, “Cohesion in alloys — fundamentals of a semi-empirical model”, Physica B+C, Vol. 100, pp. 1-28, 1980.
    [19] C. S. Wu, P. H. Tsai, C. M. Kuo and C. W. Tsai, “Effect of Atomic Size Difference on the Microstructure and Mechanical Properties of High-Entropy Alloys”, Entropy, Vol. 20, pp. 967, 2018.
    [20] Q. He and Y. Yang, “On Lattice Distortion in High Entropy Alloys”, Frontiers in Materials, Vol. 5, pp. 1-8, 2018.
    [21] J. W. Yeh, S. Y. Chang, Y. D. Honga, S. K. Chenc and S. J. Lin, “Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements”, Materials Chemistry and Physics, Vol. 103, pp. 41-46, 2007.
    [22] S. Ranganathan, “Alloyed pleasures: Multimetallic cocktails”, CURRENT SCIENCE, Vol. 85, pp. 1404-1406, 2003.
    [23] L. S. Zhang, G. L. Ma, L. C. Fu and J. Y. Tian, “Recent Progress in High-entropy Alloys”, Advanced Materials Research, Vols. 631-632, pp. 227-232, 2013.
    [24] W. Kai, F. P. Cheng, C. Y. Liao, C. C. Li, R. T. Huang and J. J. Kai, “The oxidation behavior of the quinary FeCoNiCrSix high-entropy alloys”, Materials Chemistry and Physics, Vol. 210, pp. 362-369, 2018.
    [25] J. Dąbrowa, G. Cieślak, M. Stygar, K. Mroczka, K. Berent, T. Kulik and M. Danielewski, “Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x = 0; 0.5; 1)”, Intermetallics, Vol. 84, pp. 52-61, 2017.
    [26] J. M. Wu, S. J. Lin, J. W. Yeh, S. K. Chen, Y. S. Huang and H. C. Chen, “Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content”, Wear, Vol. 261, pp. 513-519, 2006.
    [27] D. Gaskell, “Introduction to the thermodynamics of materials”, 3rd ed, Washington: Taylor & Francis, pp. 80-84, 1995.
    [28] R. Swalin, “Thermodynamics of solids”, 2nd ed, New York: Wiley, pp. 35-41, 1972.
    [29] K. Y. Tsai, M. H. Tsai and J. W. Yeh, “Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys”, Acta Materialia, Vol. 61, pp. 4887-7897, 2013.
    [30] B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George and R. O. Ritchie, “A fracture-resistant high-entropy alloy for cryogenic applications”, METAL ALLOYS, Vol. 345, pp. 1153-1158, 2014.
    [31] J. Y. He, C. Zhu, D. Q. Zhou, W. H. Liu, T. G. Nieh and Z. P. Lu, “Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures”, Intermetallics, Vol. 55, pp. 9-14, 2014.
    [32] B. F. Wang, X. R. Yao, C. Wang, X. Y. Zhang and X. X. Huang, “Mechanical Properties and Microstructure of a NiCrFeCoMn High-Entropy Alloy Deformed at High Strain Rates”, Entropy, Vol. 20, pp. 892, 2018.
    [33] O. N. Senkov, G. B. Wilks, J. M. Scott, and D. B. Miracle, “Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys”, Intermetallics, Vol. 19, pp. 698-706, 2011.
    [34] C. W. Tsai, M. H. Tsai, J. W. Yeh and C. C. Yang, “Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy”, Journal of Alloys and Compounds, Vol. 490, pp. 160-165, 2010.
    [35] W. D. Callister, D. G. Rethwisch, “Materials Science and Engineering”, Vol. 8, John Wiley & Sons Ltd, 2011.
    [36] Z. W. Wang, I. Baker, Z. Cai, S. Chen, J. D. Poplawsky and W. Guo, “The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys”, Acta Materialia, Vol. 120, pp. 228-239, 2016.
    [37] Z. M. Li, C. C. Tasan, H. Springer, B. Gault, and D. Raabe, “Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys”, Scientific Reports, Vol. 7, pp. 1-7, 2017.
    [38] L. B. Chen, R. Wei, K. Tang, J. Zhang, F. Jiang, L. He and J. Sun, “Heavy carbon alloyed FCC-structured high entropy alloy with excellent combination of strength and ductility”, Materials Science & Engineering A, Vol. 716, pp. 150-156, 2018.
    [39] Y. J. Zhou, Y. Zhang, Y. L. Wang and G. L. Chen, “Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties”, Applied Physics Letters, Vol. 90, pp. 181904, 2007.
    [40] W. D. Callister, D. G. Rethwisch, “Materials Science and Engineering”, Vol. 8, John Wiley & Sons Ltd, 2011.
    [41] F. Otto, Y. Yang, H. Bei and E. P. George, “Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys”, Acta Materialia, Vol. 61, pp. 2628-2638, 2013.
    [42] O. N. Senkov, J. D. Miller, D. B. Miracle and C. Woodward, “Accelerated exploration of multi-principal element alloys with solid solution phases”, NATURE COMMUNICATIONS, Vol. 6, pp. 1-10, 2015.
    [43] W. J. Joost, “Reducing Vehicle Weight and Improving U.S. Energy Efficiency Using Integrated Computational Materials Engineering”, the journal of the Minerals, Metals & Materials Society, Vol. 64, pp. 1032-1038, 2012.
    [44] R. Li, J. C. Gao and K. Fan, “Microstructure and mechanical properties of MgMnAlZnCu high entropy alloy cooling in three conditions”, Materials Science Forum, Vol. 686, pp. 235-241, 2011.
    [45] R. Li, J. C. Gao and K. Fan, “Study to microstructure and mechanical properties of Mg containing high entropy alloys”, Materials Science Forum, Vol. 650, pp. 265-271, 2010.
    [46] N. D. Stepanov, N. Y. Yurchenko, D. G. Shaysultanov, G. A. Salishchev, and M. A. Tikhonovsky, “Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys”, Materials Science and Technology, Vol. 31, pp. 1184-1193, 2015.
    [47] R. Feng, M. C. Gao, C. Lee, M. Mathes, T. Zuo, S. Chen, J. A. Hawk, Y. Zhang and P. K. Liaw, “Design of Light-Weight High-Entropy Alloys”, Entropy, Vol. 18, p. 333, 2016.
    [48] Y.C. Liao , T.H. Li , P.H. Tsai , J.S.C. Jang , K.C. Hsieh , C.Y. Chen , J.C. Huang, H. J. Wu , Y.C. Lo , C.W. Huang , I.Y. Tsao “Designing novel lightweight , high-stregth and high-plasticity Tix(AlCrNb)100-x”, Intermetallics, Vol. 117, article 106673, 2020.
    [49] S. Ma, J. Procházka, P. Karvánková, Q. Ma, X. Niu, X. Wang, D. Ma, K. Xu and S. Vepřek, “Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN”, Surface and Coatings Technology, Vol. 194, pp. 143-148, 2005

    QR CODE
    :::