跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳前甫
Chian Fu
論文名稱: 含短鏈段聚乙氧烯矽氧烷改質之具尿素官能基高分子電解質結構鑑定與動力學研究
A New Highly Conductive Organic-Inorganic Hybrid Electrolyte Based on Co-condensation of Di-ureasil and Ethylene Glycol-containing Alkoxysilane
指導教授: 高憲明
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 97
語文別: 中文
論文頁數: 109
中文關鍵詞: 高分子電解質ED2000MPEOPS
外文關鍵詞: polymer electrolyte, ED2000, MPEOPS
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
      本論文主要研究添加含短鏈段聚乙氧烯 (polyethylenoxy) 之矽氧烷2-[methoxy(polyethylenoxy)propyl]trimethoxysilane(MPEOPS) 及含 NCO 官能基之矽氧烷 3-(triethoxysilyl)propyl-isocyanate (ICPTES) 與高分子 jeffamine-ED series (ED2000、ED900、ED600) 反應生成有機無機固態高分子電解質,目的是希望在不降低機械強度的情況下增加整體 PEO 的含量,且在矽的區塊中仍有短鏈段 PEO 可以幫助鋰離子的傳遞。接著我們對添加新矽源所造成的物性變化,以及在不同 Lithium perchlorate (LiClO4) 濃度下對導電行為的影響進行研究。
      在儀器部分主要使用X光繞射儀 (XRD)、微差掃描卡(DSC)、熱重分析儀 (TGA)、掃描式電子顯微鏡 (SEM)、紅外吸收光譜儀 (FTIR)、交流阻抗分析儀 (AC-Impedance) 以及固態核磁共振光譜儀 (Solid State NMR) 等儀器。
      在結構鑑定及動力學探討部份,首先利用DSC測量高分子電解質之Tg及Tm點,接著使用XRD、TGA、FTIR、SEM等儀器對其熱穩定性及結構做鑑定,再來用交流阻抗分析儀 (AC-Impedance) 測其導電度,最後利用固態核磁共振光譜儀 (Solid State NMR) 做動力學方面的探討。
      本高分子電解質在30 ?C 時的最佳導電度可達6.77 × 10-5 S/cm。


    Abstract
    New organic-inorganic hybrid electrolytes based on di-ureasil backbone structures by reacting poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether) (ED2000) with 3-(triethoxysilyl)propyl isocyanate (ICPTES), followed by co-condensation with methoxy(polyethylenoxy)propyl trimethoxysilane (MPEOP) in the presence of LiClO4 were prepared and characterized by a variety of techniques. The hybrid electrolytes showed good resistance to crystallization and excellent conductivity for use in lithium ion batteries, as determined by DSC and impedance measurements, respectively. The temperature dependence of the ionic conductivity exhibited a VTF (Vogel-Tamman-Fulcher)-like behavior for all the compositions studied and a maximum ionic conductivity value of 6.77×10-5 Scm-1, a relatively high value for solid polymer electrolytes, was achieved at 30 ?C for the hybrid electrolyte with a [O]/[Li] ratio of 24. The systematic study showed that a progressive decrease in the mobility of the polymer chains with increasing salt concentrations as confirmed from the glass transition temperature (Tg). A microscopic view of the dynamic behavior of the polymer chains (13C) and the ionic species (7Li) was provided by the 1H and 7Li line widths measured from 2D 1H–13C WISE (Wideline Separation) and variable temperature 7Li static NMR, respectively, to elucidate the influence of the mobility of the polymer chains and the charge carriers on the observed ionic conductivity. The present salt free hybrid electrolyte after plasticization with 1 M LiClO4 in EC/PC solution exhibited a swelling ratio of 275% and reached an ionic conductivity value up to 8.3×10-3 Scm-1 at 30 °C, which make it a good candidate for the further development of advanced rechargeable lithium-ion batteries.

    目錄 第壹章 緒論……………………………………………………………..1 1-1. 簡介………………………………………………………………1 1-2. 文獻回顧…………………………………………………………3 1-2-1. 鋰電池..……………………………………………………..3 1-2-2. 鋰高分子電池……………..………………………………..5 1-2-3. 高分子電解質……………………………………………....8 1-2-4. 固態高分子電解質…………………………………………8 1-2-5. 膠態高分子電解質………………………………………..16 1-2-6. 微孔型高分子電解質……………………………………..18 1-2-7. 異氰酸酯與其相關反應…………………………………..20 1-2-8. 有機矽高分子……………………………………………..22 1-3. 研究目的………………………………………………..……....23 第貳章 研究規劃………………………………………………………25 第叁章 實驗部分與原理………………………………………………26 3-1. 實驗藥品………………………………………………………..26 3-2. 儀器設備………………………………………………………..27 3-3. 固態高分子電解質膜之製備………..……..…………………..28 3-4. 儀器分析原理…………………………………………………..30 3-4-1. X 光繞射儀…………………………………...……….....30 3-4-2. 微差掃瞄熱卡計………………………………………....32 3-4-3. 熱重量分析儀……………………………………...…...34 3-4-4. 掃描式電子顯微鏡………………………………………..34 3-4-5. 傅立葉紅外線吸收光譜儀………………………………..35 3-4-6. 交流阻抗分析儀…………………………………………..36 3-4-7. 固態核磁共振光譜儀……………………………………..38 3-4-7-1. 原理簡介……………………………………………...38 3-4-7-2. 常用固態核磁共振技術……………………………...39 第肆章 結果與討論…………………………………………………..51 4-1. 固態高分子電解質………………………………………………..51 4-2. X-ray 粉末繞射圖譜分析...……………………………...…..…...52 4-3. 微差掃瞄熱卡計分析………………………………………...…...55 4-4. 熱重量分析………………….………………………………..…...60 4-5. 紅外吸收光譜之鑑定……………………………………………..63 4-6. 掃描式電子顯微鏡 (SEM) 對高分子電解質膜表面之分析…...70 4-7. 固態高分子電解質之導電度量測………………………………..74 4-8. 固態核磁共振光譜分析….………………..……………………...86 4-8-1. 13C CP/MAS NMR…………………......………...…..........86 4-8-2. 1H/13C 2D WISE NMR……………………………..………91 4-8-3. 29Si MAS NMR …............………...………...….………..…94 4-8-4. 7Li 譜寬分析……………………………………………….96 4-8-5. 7Li-{1H} MAS NMR………...............................................101 第伍章 結 論…………………………………………………………104 參考文獻………………………………………………………………105

    1. 劉世忠. 產經資訊雜誌. 2003, 七月號, 頁45.
    2. 費定國、高昀成 “碳材料在鋰電池之發展與應用” 工業材料 121
    期,頁80.
    3. Fenton, D.E.; Parker, J.M.; Wright, P.V. Polymer 1973, 14, 589.
    4. Wright, P.V. Br. Polym. J. 1975, 7, 319.
    5. Armand, M.B.; Chabagno, J.M.; Duclot, M.J. In: Fast Ion Transport in
    Solids (Eds. P. Vashishta, J.N. Mundy, G.K. Shenoy), Elesevier,
    North-Holland, Amsterdam, 1979, p.131.
    6. Peled, E.; Golodnitsky, D. and Ardel, G., J. Electrochem. Soc., 1997, 144,L208.
    7. 薛立人, 二次電池之回顧與展望, 工業材料, 1999, 146, 70.
    8. Peled, E., J. Electrochem. Soc., 1979, 126, 2047.
    9. Peled, E.; Golodnitsky, D.; Ardel, G. and Eshkenazy, V., Electrochim. Acta, 1995, 40, 2197.
    10. Peled, E.; Golodnitsky, D. and Penciner, J., The anode/electrolyte
    interface, in Handbook of Battery Materials, J. O. Besenhard, Editor,
    p.419-456, Wiley-VCH, Weinheim, Germany, 1999
    11. Ein-Eli, Y., Electrochem. Solid-State Lett., 1999, 2, 212.
    12. Scrosati, B., J. Electrochem. Soc., 1992, 139, 2776.
    13. Selim, R. and Bro, P., J. Electrochem. Soc., 1974, 121, 1457.
    14. Raul, R. D.; Brummer, S. B., Electrochim. Acta, 1977, 22, 75.
    15. Aurbach, D.; Ein-Eli, Y.; Markovsky, B.; Zaban, A.; Luski,
    S.;Carmeli, Y.; Yamin, H., J. Electrochem. Soc., 1995, 142, 2882.
    16. Ein-Eli, Y.; Markovsky, B.; Aurbach, D.; Carmeli, Y.; Yamin, H.;
    Luski, S., Electrochim. Acta, 1994, 39, 2559.
    17. Chusid, O.; Ein Ely, Y.; Aurbach, D.; Babai, M.; Carmeli, Y., J.
    Power Sources, 1993, 43/44, 47.
    18. Aurbach, D.; Ein-Eli, Y.; Chusid, O.; Carmeli, Y.; Babai, M.; Yamin,
    H., J. Electrochem. Soc., 1994, 141, 603.
    19. Ein-Eli, Y., Electrochem. Solid-State Lett., 1999, 2, 212.
    20. Besenhard, J. O.; Winter, M.; Yang, J.; Biberacher, W., J. Power
    Sources, 1993, 54, 228.
    21. Ein-Eli, Y.; Thomas, S. R.; Koch, V. R., J. Electrochem. Soc., 1996,
    143, L195.
    22. Ein-Eli, Y.; Thomas, S. R.; Koch, V. R., J. Electrochem. Soc., 1997,
    144, 1159.
    23. Shu, Z. X.; McMillan, R. S.; Murray, J. J., J. Electrochem. Soc., 1993,
    140, 922.
    24. Wilkinson, D.; Dahn, J. R. U.S. Patent 5, 1992, 130, 211.
    25. Shu, Z. X.; McMillan, R. S.; Murray, J. J., J. Electrochem. Soc., 1993,
    140, L101.
    26. Wang, C.; Nakamura, H.; Komatsu, H.; Yoshio, M.; Yoshitake, H., J.
    Power Sources, 1998, 74, 142.
    27. Simon, B.; Boeuve, J. P. U.S. Patent 5, 1997, 626, 981.
    28. Barker, J.; Gao, F. U.S. Patent 5, 1998, 712, 059.
    29. Naruse, Y.; Fujita, S.; Omaru, A. U.S. Patent 5, 1998, 714, 281.
    30. Aurbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schmidt, M.;
    Heider, U., Electrochim. Acta, 2002, 47, 1423.
    31. Wrodnigg, G. H.; Besenhard, J. O.; Winter, M., J. Electrochem. Soc.,
    1999, 146, 470.
    32. Naji, A.; Ghanbaja, J.; Willmann, P.; Billaud, D., Electrochim. Acta,
    2000, 45, 1893.
    33. Matsuo, Y.; Fumita, K.; Fukutsuka, T.; Sugie, Y.; Koyama, H.; Inoue,
    K., J. Power Sources, 2003, 119/121, 373.
    34. Blomgren, G. E., J. Power Sources, 2003, 119/121, 326.
    35. Proceedings of 2004 Taipei International Power Forum, The Solid
    Electrolyte Interface(SEI)in Lithium Batteries:Understanding and
    Misunderstanding, 2004, B-5.
    36. Hung, H.Electrochim. Acta. 1992, 37, 1671.
    37. Meyer W. H., Adv. Mater., 1998, 10, 439.
    38. MacGlashan, G. S.; Andreev, Y. G.; Bruce, P. G. Nature 1999, 398,
    792.
    39. Gadjourova, Z.; Andreev, Y. G.; Tunstall, D. P.; Bruce, P. G. Nature
    2001,412, 520.
    40. Wright, P. V.; Zheng, Y.; Bhatt, D.; Richardson, T.; Ungar, G.
    Polymer Int. 1998, 47, 34.
    41. Chung, S. H.; Wang, Y.; Greenbaum, S. G.; Golodnitsky, D.; Peled,E.
    Electrochem. Solid State 1999, 2, 553.
    42. Tonge, J. S.; Shriver, D. F., J, Electrochem. Soc., 1987, 134, 269.
    43. Fauvarque, J. F., Electrochimica Acta, 2000, 40(13-14), 2295.
    44. Gozdz, A.S.; Tarascon, J.M.; Warren, P.C.; Schmutz, C.N., Shokoohi,
    F.K., Proceedings of the Fifth International Symposium on Polymer
    Electrolyte, Uppsala, Sweden, 11-16 August, 1996, 1.
    45. Shriver, D. F., Macromolecules, 1986, 19, 1508.
    46. Shibata, M., Kobayash, T., European Polymer Journal, 2000, 36,
    485.
    47. Fujinami, T.; Tokimune, A.; Mehta, M. A.; Shriver, D. F.; Rawsky,
    G.C., Chem. Mater. 1997, 9, 2236.
    48. Mandal, B. K.; Walsh, C. J.; Sooksimuang, T.; Behroozi, S. J., Chem.
    Mater. 2000, 12, 6.
    49. Angell, C. A.; Liu, C.; Sanzhez, E., Naure, 1993, 362(6416), 137.
    50. deAzevedo, E. R. ; Reichert, D.; Vidoto, E. L. G.; Dahmouche, K.;
    Judeinstein, P., Chem. Mater., 2003, 15, 2070.
    51. Judeinstein, P.; Brik, M. E.; Bayle, J. P.; Courtieu, J.; Rault, J., Mater.
    Res. Soc. Symp. Proc., 1994, 346, 937.
    52. Brik, M. E.; Titman, J. J.; Bayle, J. P.; Judeinstein, P., J. Polym.Sci.,
    Part B: Polym. Phys., 1996, 34, 2533.
    53. Lesot, P.; Chapuis, S.; Bayle, J. P.; Rault, J.; Lafontaine, E.; Campero, A.; Judeinstein, P., J. Mater. Chem., 1998, 8, 147.
    54. Feullade, G. P.J. Perche, Appl. Electrochem., 1975, 63, 5.
    55. Kim, Y. T.; Smotkin, E. S., Solid State Ionics, 2002, 149, 29.
    56. Ito, Y.; Kanehori, K.; Miyauchi, K.; Kudo, T., J. Mater. Sci., 1987, 22, 1845.
    57. Watanabe, M.; Kanba, M.; Matsuda, H.; Mizoguchi, K.; Shinohara, I.;
    Tsuchida, E., Chem.-Rapid. Commun., 1981, 2, 741.
    58. Gozdz,A. S.; Schmutz, C. N.; Tarascon, J. M. U.S. Patent 5,1995, 418, 91.
    59. Gozdz, A. S.; Schmutz, C. N.; Tarascon, J. M. U.S. Patent 5,1994, 296, 318.
    60. Gozdz, A. S.; Schmutz, C. N.; Warren, P. C. U.S. Patent 5,1995, 460, 904.
    61. Sekhon, S. S.; Singh, H. P., Solid State Ionics, 2002, 152-153, 169.
    62. Teeter, D.; Stephan, A. M., Electrochimica Acta, 2003, 48, 2143.
    63. Kim, D. W.; Sun, Y. K., J. Power Sources, 2001, 102, 41.
    64. Michot, T.; Nishimoto, A.; Watanabe, M., Electrochaimica Acta,
    2000, 45, 1347.
    65. Boudin, F.; Andrieu X.; Jehoulet, C., J. Power Sources, 1999, 81/82,
    804.
    68. 岩田敬治,聚胺基甲酸酯 PU 原理與實用,復漢出版社,1979,p.1.
    67. Suzwki, I.; Hisamatsu, Y.; and Masuko, N.; J. Electrochem. Soc. 1980, 127, 2210.
    68. 朱呂民,聚氨酯合成材料,江蘇科學技術出版社,2002, 375,
    p.15.、58.
    69. Schheider, N.S. Desper, C.R. Illinger, J.L. and King, A.O.
    J. Macromol. Sci-Phys., 1975, B11, 527.
    70. Silva, M .M.; Nunes, S. C.; Barbosa, P. C.; Evans, A.; de Zea
    Bermudez, V.; Smith, M. J.; Ostrovskii, D. Electrochim. Acta 2006,
    52, 1542.
    71. Digar, M.; Hung, S.L.; Wang, H.L.; Wen, T.C.; Gopalan, A. Polymer 2002, 43, 681.
    72. Vlasoula Bekiari and P. Lianous Chem. Mater. 2000, 12, 3095.
    73. Tatyana Brankova, Vlasoula Bekiari, and Panagiotis Lianos, Chem.Mater. 2003, 15, 1855.
    74. Vlasoula Bekiari and Panagiotis Lianos, Chem. Mater. 2006, 18, 4142.
    75. Miriam Benitez, Debasish Das, Rita Ferreira, Uwe Pischel, and Hermenegildo Garcı´a, Chem. Mater. 2006, 18, 5597.
    76. Bloembergen, N.; Purcell, E. M.; Pound, R. V. Phys. ReV. 1948, 73, 679.
    77. Chung, S. H.; Jeffrey, K. R.; Stevens, J. R. J. Chem. Phys. 1991, 94, 1803.
    78. Abragam, A.; The Principles of Nuclear Magnetism, 1961
    79. Nilson C. Mello, Tito J. Bonagamba, Hora´ cio Panepucci, Karim Dahmouche, Patrick Judeinstein, and Michel A. Aegerter|, Macromolecules, 2000, 33, 1280.
    80. Bronstein, L. M.; Joo, C.; Karlinsey, R.; Ryder, A. and Zwanziger, J. W. Chem. Mater. 2001, 13, 3678.
    81. Paulo H. de Souza, Rodrigo F. Bianchi, Karim Dahmouche, Patrick Judeinstein,| Roberto M. Faria, and Tito J. Bonagamba, Chem. Mater. 2001, 13, 3685.
    82. Jae-Deok Jeon and Seung-Yeop Kwak, Macromolecules, 2006, 39, 8027.
    83. Andre´ L. B. S. Bathista, Eduardo R. deAzevedo, Antonio C. Bloise, Karim Dahmouche, Patrick Judeinstein, and Tito J. Bonagamba, Chem. Mater. 2007, 19, 1780.
    84. Jason Mattia, Paul Painter, Macromolecules, 2007, 40, 1546.
    85. Murata, K.; Izuchi, S.; Yoshihisa, Y. Electrochim. Acta. 2000, 45, 1501.
    86. Münchow, V.; Noto, V.D.; Tondello, E. Electrochim. Acta. 2000, 45, 1211.
    87. van Heumen, J. D.; Steven, J. R. Macromolecules 1995, 28, 4268.
    88. Fish, D.; Khan, I. M.; Wu, E.; Smid, J. Br. Polym. J. 1988, 20, 281.
    89. Nagaoka, K.; Naruse, H.; Shinohara, I.; Watanabe, M. J. Polym. Sci., Polym. Lett. Ed. 1984, 22, 659.
    90. Ogumi, Z.; Uchimoto, Y.; Takehara, Z. Solid State Ionics, 1989, 35, 417.
    91.Gray, F.M. Polymer Electrolytes 1997, The Royal Society of Chemistry, UK,Chap. 1.
    92. Watanabe, M.; Sanui, K.; Ogata, N.; Kobayashi, T.; Ohtaki, Z. J. Appl. Phys.1985, 57, 123.
    93. Chen, W. B.; Feng, H. Q.; He, D. O.; C. H. Ye J. Appl. Polym. Sci. 1998, 67, 139.
    94. De Paoli, M.A.; Zanelli, A.; Mastragostino, M.; Rocco, A.M. J. Electroana . Chem. 1997, 435, 217.
    95. Hu, S.; Fang, S. Electrochim. Acta. 1999, 44, 2721.
    96. Fulcher, G.S. J. Am. Ceram. Soc. 1925, 8, 339.
    97. Vogel, H. Phys. Z. 1921, 22, 645.
    98. Chintapalli, S.; Frech, R. Solid State Ionics. 1996, 86-88, 341.
    99. Albinsson, I.; Mellander, B.-E.; Stevens, J.R. J. Chem. Phys. 1992, 96, 681.
    100. Chen-Yang, Y.W.; Hwang, J.J.; Chang, F.H. Macromolecules. 1997, 30, 3825.
    101. Qian, X.; Gu, N.; Cheng, Z.; Yang, X.; Wang, E.; Dong, S. Mater. Chem. Phys. 2002, 74, 98.
    102. Adam, G.; Gibbs, J.H. J. Chem. Phys. 1965, 43, 139.
    103. Bruce, P.G.; Vincent, C.A. J. Chem. Soc., Faraday Trans. 1993, 122, 131.
    104. Frech, R.; Manning, J.; Teeters, D.; Black, B.E. Solid State Ionics 1988, 28-30,954.
    105. 高憲明, 化工技術, 2003, 11,166.
    106. Chu, P.; Jen H. P.; Lo F. R.; Lang, C. L. Macromolecules 1999, 32,4738.

    QR CODE
    :::