跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳立琪
Rizki Wulandari
論文名稱: 印尼蘇門答臘地震危害分析
Probabilistic Seismic Hazard Assessment of Sumatra, Indonesia
指導教授: 詹忠翰
Chung-Han Chan
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 112
中文關鍵詞: 蘇門答臘印尼地震危害分析
外文關鍵詞: Long-term probability, Multiple-segments scenario
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蘇門答臘地區以其可怕的地震歷史而聞名,最具代表性的是2004年的極強地震,該地震為邊緣俯衝所引起。事實上,蘇門答臘斷層系統(SFS)的活動也威脅著該地區,具有巨大的潛在危險。本研究采用一種先進的方法來評估概率性地震危害。為了更好地展示每個地震源可能的地震活動,我們的分析融合了截斷指數模型、長期概率模型(基於時間相關的布朗行程時間(BPT)模型)以及考慮蘇門答臘海溝和蘇門答臘斷層沿多段斷裂的地震速率。由於缺乏地動模型,因此使用地震情景來選擇適當的地動預測方程,分別用於淺成壓實層、邊緣俯衝和俯冲地震帶。為了了解地震源對某些目標地點的影響,展示了震級-距離組合的危險度貢獻。結果表明,SFS是該地區整體地震危險的主要貢獻者,在蘇門答臘的基岩站點上,短期和長期回歸期的峰值地面加速度(PGA) 值均很高,例如50年內超過10%和2%的概率分別為1.0-1.8 g和3.8-4.0 g。此外,在Sa 0.2 s譜段的地圖上,顯示出在蘇門答臘斷層附近有較高的譜加速度值,其回歸期為475年和2745年時,分別為1.0-1.8 g和3.8-4.0 g,而Sa 1.0 s時的值較低,分別為0.6-0.8 g和1.2-1.8 g。在本論文提出的危險度圖中,我們評估了基岩工程(Vs30=760 m/s) 和場地效應(Vs30 by USGS)。場址效應對於蘇門達臘平原和蘇門達臘斷層周圍的特定區域有影響。此研究的結果可以為應急響應規劃、城市發展和政府機構在蘇門達臘地區發生災難性地震前的準備提供有價值的信息。


    The Sumatra region is known for its history of devastating earthquakes, with the most significant being the 20046 {\ M}_w9.2 Aceh earthquake that occurred at subduction interface. In fact, not only the great potential from the source of the megathrust but also the threat due to the activities of the Sumatran fault system (SFS). A progressive approach for assessing the probabilistic seismic hazard is used in this study. In order to better illustrate possible seismic activity of each seismogenic source, our analysis incorporates the truncated exponential model, the long-term probability modelling with time-dependent Brownian Passage Time (BPT) model, and the earthquake rates considering complex multiple-segments rupture along the Sunda Trench and the Sumatran fault. To overcome the lack of ground-motion models, earthquake scenarios were used to choose the appropriate ground motion models for shallow crustal, subduction interface, and subduction intraslab regions, respectively. To understand the impact of seismic sources to some target sites, demonstrate the hazard contributions of magnitude-distance sets through disaggregation. The results indicate that the SFS is the primary contribution to the overall seismic hazard in the region, with peak ground acceleration (PGA) values at bedrock sites of Sumatra in both short and long return periods, e.g., 10% and 2% probability of exceedance in 50 years, respectively. Besides, the maps for spectral periods shows high spectral acceleration values levels in the vicinity of Sumatran fault at Sa 0.2 s with return periods of 475 years and 2745 years are 1.0-1.8 g and 3.8-4.0 g, while the Sa 1.0 s had lower values of 0.6-0.8 g and 1.2-1.8 g for longer periods of time, respectively. In our the hazard maps proposed in this thesis, we evaluated the bedrock engineering (Vs30 =760 m/s) and sSite effects (Vs30 by USGS). SSite effects has an impact on the Sumatran plain and specific areas around the Sumatran fault. The outcomes of this study can provide valuable information for emergency response planning, urban development, and preparedness of governmental agencies before a disastrous earthquake in the Sumatra region.

    ABSTRACT iv 摘要 vi ACKNOWLEDGEMENTS vii TABLE OF CONTENTS viii LIST OF TABLES x LIST OF FIGURES xi LIST OF ABBREVIATIONS xv CHAPTER I 1 INTRODUCTION 1 1.1 Background 1 1.2 Aims and Structure of the Thesis 4 CHAPTER II 15 SEISMICITY ACTIVITY 15 2.1 Earthquake Catalogue 15 2.1.1 Magnitude Conversion 15 2.1.2 Declustering 16 2.1.3 Completeness Analysis 17 2.2 Seismic Sources Models of Sumatra 18 2.2.1 Shallow-Background Area Sources 18 2.2.2 Specific Fault Sources 19 2.2.3 Subduction Interface Sources 19 2.2.4 Subduction Intraslab Sources 20 2.4 Fault Rupture Probability 21 2.5 Earthquake Rates of Multiple-segment Ruptures 22 2.5.1 Complex Multiple-segment Ruptures in Sumatra Fault 23 2.5.2 Complex Multiple-segment Ruptures in Sunda Trench 25 CHAPTER III 46 STRONG GROUND MOTION BEHAVIOR 46 3.1 Ground Motion Prediction Equations (GMPEs) 46 3.1.1 GMPEs for Active Shallow Crustal 46 3.1.2 GMPEs for Subduction Interface 47 3.1.3 GMPEs for Subduction Intraslab 48 3.2 Site Classification 49 CHAPTER IV 59 PROBABILISTIC SEISMIC HAZARD ASSESSMENT 59 4.1 An overview of PSHA 59 4.2 Sources Model Logic-tree 60 4.3 Representation of PSHA 62 4.3.1 Hazard Curve 62 4.3.2 Hazard Maps 62 4.3.3 Disaggregation 62 4.3.4 Uniform Hazard Spectra 63 CHAPTER V 67 RESULTS 67 5.4 Outcomes of PSHA and Their Interpretation 67 5.2 Analysis of the Outcomes to the Latest Research in PSHA Sumatra 70 5.3 Site Effects 71 CHAPTER VI 85 CONCLUSIONS, LIMITATIONS AND SUGGESTIONS FOR FUTURE RESEARCH 85 6.1 Conclusions 85 6.2 Limitations and Suggestions for Future Works 86 REFERENCES 87 APPENDIX 94

    Abrahamson, N. A., & Boomer, J. J. (2005). Opinion Paper: Probability and Uncerntainty in Seismic Hazard Analysis. Earthquake Spectra, 21(2), 1–5.
    Abrahamson, N. A., Silva, W. J., & Kamai, R. (2014). Summary of the ASK14 ground motion relation for active crustal regions. Earthquake Spectra, 30(3), 1025–1055. https://doi.org/10.1193/070913EQS198M
    Abrahamson, N.A., Eeri, M, Gregor, N., & Addo, K. (2015). BC Hydro Ground Motion Prediction Equations for Subduction Earthquakes. Earthquake Spectra 32(1): 23–44.
    Atkinson, G. M., Boore, D. M., Atkinson, G. M., & Boore, D. M. (2003). Empirical Ground-Motion Relations for Subduction-Zone Earthquakes and Their Application to Cascadia and Other Regions. In Bulletin of the Seismological Society of America (Vol. 93, Issue 4). www.seismosoc.org
    Bellier, O., Sébrier, M., Pramumijoyo, S., Beaudouin, Th., Harjono, H., Bahar, I., & Forni, O. (1997). Paleoseismicity and seismic hazard along the Great Sumatran Fault (Indonesia). Journal of Geodynamics, 24(1), 169–183. https://doi.org/https://doi.org/10.1016/S0264-3707(96)00051-8
    Bolton Seed, H., Ugas, C., & Lysmer, J. (1976). Site-Dependent Spectra for Earthquake-Resistant Design. In Bulletin of the Seismological Society of America (Vol. 66, Issue 1). http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/66/1/221/5320247/bssa0660010221.pdf
    Bommer, J. J., & Abrahamson, N. A. (2006). Why Do Modern Probabilistic Seismic-Hazard Analyses Often Lead to Increased Hazard Estimates? Bulletin of the Seismological Society of America, 96(6), 1967–1977. https://doi.org/10.1785/0120060043
    Bommer, J. J., & Scherbaum, F. (2008). The Use and Misuse of Logic Trees in Probabilistic Seismic Hazard Analysis. Earthquake Spectra, 24(4), 997–1009. https://doi.org/10.1193/1.2977755
    Boore, D. M., & Atkinson, G. M. (2008). Ground-motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and 5%-damped PSA at Spectral Periods between 0.01 s and 10.0 s. Earthquake Spectra, 24(1), 99–138. https://doi.org/10.1193/1.2830434
    Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGA-West2 Equations for Predicting PGA, PGV, and 5% damped PSA for Shallow Crustal Earthquakes. Earthquake Spectra, 30(3), 1057–1085. https://doi.org/10.1193/070113EQS184M
    Campbell, K. W., & Bozorgnia, Y. (2014). NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5% damped Linear Acceleration Response Spectra. Earthquake Spectra, 30(3), 1087–1114. https://doi.org/10.1193/062913EQS175M
    Chan, C. H., Ma, K. F., Shyu, J. B. H., Lee, Y. T., Wang, Y. J., Gao, J. C., Yen, Y. T., & Rau, R. J. (2020). Probabilistic Seismic Hazard Assessment for Taiwan: TEM PSHA2020. Earthquake Spectra, 36(1_suppl), 137–159. https://doi.org/10.1177/8755293020951587
    Chan, C., Ma, K., Lee, Y., & Wang, Y. (2018). Rethinking Seismic Source Model of Probabilistic Hazard Assessment in Taiwan after the 2018 Hualien, Taiwan, Earthquake Sequence. Seismological Research Letters, 90(1), 88–96. https://doi.org/10.1785/0220180225
    Chartier, T., Scotti, O., & Lyon-Caen, H. (2019). Sherifs: Open-source Code for Computing Earthquake Rates in Fault Systems and Constructing Hazard Models. Seismological Research Letters, 90(4), 1678–1688. https://doi.org/10.1785/0220180332
    Chartier, T., Scotti, O., Lyon-Caen, H., & Boiselet, A. (2017). Methodology for Earthquake Rupture Rate Estimates of Fault Networks: Example for the western Corinth rift, Greece. Natural Hazards and Earth System Sciences, 17(10), 1857–1869. https://doi.org/10.5194/nhess-17-1857-2017
    Chartier, T., Scotti, O., Lyon-Caen, H., Richard-Dinger, K., Dieterich, J. H., & Shaw, B. E. (2021). Modelling Earthquake Rates and Associated Uncertainties in the Marmara Region, Turkey. Natural Hazards and Earth System Sciences, 21(8), 2733–2751. https://doi.org/10.5194/nhess-21-2733-2021
    Cheng, C.-T., Hsieh, P.-S., Lin, P.-S., Yen, Y.-T., & Chan, C.-H. (2015). Probability Seismic Hazard Mapping of Taiwan. In Encyclopedia of Earthquake Engineering (pp. 1–25). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-36197-5_100-1
    Cheng, J., Chartier, T., & Xu, X. (2020). Multisegment Rupture Hazard Modeling along the Xianshuihe Fault Zone, Southeastern Tibetan Plateau. Seismological Research Letters, 92(2A), 951–964. https://doi.org/10.1785/0220200117
    Chiou, B. S. J., & Youngs, R. R. (2014). Update of the Chiou and Youngs NGA model for the Average Horizontal Component of Peak Ground Motion and Response Spectra. Earthquake Spectra, 30(3), 1117–1153. https://doi.org/10.1193/072813EQS219M
    Cornell, C. A. (1968). Engineering Seismic Risk Analysis. Bulletin of the Seismological Society of America, 58(5), 1583–1606. https://doi.org/10.1785/BSSA0580051583
    Cosentino, P., Ficarra, V., & Luzio, D. (1977). Truncated Exponential Frequency-magnitude Relationship in Earthquake Statistics. Bulletin of the Seismological Society of America, 67(6), 1615–1623. https://doi.org/10.1785/BSSA0670061615
    Ellsworth, W. L., Matthews, M. V, Nadeau, R. M., Nishenko, S. P., Reasenberg, P. A., & Simpson, R. W. (1999). A physically-based earthquake recurrence model for estimation of long-term earthquake probabilities. US Geological Survey Open-File Report, 99(522), 22.
    Field, E. H. (2015). Computing Elastic-rebound-motivated Earthquake Probabilities in Unsegmented Fault Models: A new methodology supported by physics-based simulators. Bulletin of the Seismological Society of America, 105(2), 544–559. https://doi.org/10.1785/0120140094
    Fujiwara, H. (2014). Seismic Hazard Maps for Japan. (pp. 1–28). https://doi.org/10.1007/978-3-642-27737-5_617-1
    Gao, J. C., Chan, C. H., Ma, K. F., & Lee, C. T. (2022). Probabilistic Fault Displacement Hazards along the Milun Fault. Bulletin of the Seismological Society of America, 112(5), 2745–2757. https://doi.org/10.1785/0120210312
    Gao, J., Tseng, Y., & Chan, C. (2022). Validation of the Probabilistic Seismic Hazard Assessment by the Taiwan Earthquake Model through Comparison with Strong Ground Motion Observations. Seismological Research Letters, 93(4), 2111–2125. https://doi.org/10.1785/0220210186
    García, D., Wald, D. J., & Hearne, M. G. (2012). A Global Earthquake Discrimination Scheme to Optimize Ground-motion Prediction Equation Selection. Bulletin of the Seismological Society of America, 102(1), 185–203. https://doi.org/10.1785/0120110124
    Gardner, J. K., & Knopoff, L. (1974). Is the Sequence of Earthquakes in southern California, with Aftershocks Removed, Poissonian? Bulletin of the Seismological Society of America (Vol. 64, Issue 5).
    Geomatrix Consultants Inc (1993) Seismic margin earthquake for the Trojan site: Final unpublished report prepared for Portland General Electric Trojan Nuclear Plant, Rainier, Oregon.
    Ghofrani, H., & Atkinson, G. M. (2014). Ground-motion Prediction Equations for Interface Earthquakes of M7 to M9 based on Empirical Data from Japan. Bulletin of Earthquake Engineering, 12(2), 549–571. https://doi.org/10.1007/s10518-013-9533-5
    Gómez-Novell, O., Chartier, T., García-Mayordomo, J., Ortuño, M., Masana, E., Insua-Arévalo, J. M., & Scotti, O. (2020). Modelling Earthquake Rupture Rates in Fault Systems for Seismic Hazard Assessment: The Eastern Betics Shear Zone. Engineering Geology, 265. https://doi.org/10.1016/j.enggeo.2019.105452
    Gutenberg, B., & Richter, C. F. (1944). Frequency of Earthquakes in California. Bulletin of the Seismological Society of America, 34(4), 185–188. https://doi.org/10.1785/BSSA0340040185
    Hanks, T. C., & Kanamori, H. (1979). A Moment Magnitude Scale. Journal of Geophysical Research B: Solid Earth, 84(B5), 2348–2350. https://doi.org/10.1029/JB084iB05p02348
    Haridhi, H. A., Huang, B. S., Wen, K. L., Denzema, D., Agung Prasetyo, R., & Lee, C. S. (2018). A Study of Large Earthquake Sequences in the Sumatra Subduction Zone and its Possible Implications. Terrestrial, Atmospheric and Oceanic Sciences, 29(6), 635–652. https://doi.org/10.3319/TAO.2018.08.22.01
    International Building Code. (2009). https://codes.iccsafe.org/content/IBC2009
    Irsyam, M., Cummins, P. R., Asrurifak, M., Faizal, L., Natawidjaja, D. H., Widiyantoro, S., Meilano, I., Triyoso, W., Rudiyanto, A., Hidayati, S., Ridwan, M., Hanifa, N. R., & Syahbana, A. J. (2020). Development of the 2017 National Seismic Hazard Maps of Indonesia. Earthquake Spectra, 36(1_suppl), 112–136. https://doi.org/10.1177/8755293020951206
    Kramer, S. L. (1996). Geotechnical earthquake engineering. Pearson Education India.
    Kulkarni, R. B., Youngs, R. R., & Coppersmith, K. J. (1984). Assessment of confidence intervals for results of seismic hazard analysis, in 8th World Conference on Earthquake Engineering. in 8th World Conference on Earthquake Engineering." (1984): 263-270.
    Lin, P.S., 2009. Ground-motion attenuation relationship and path-effect study using Taiwan Data set. Ph.D. Dissertation. Institute of Geophysics, National Central University, Chung-Li, Taiwan (in Chinese).
    Lin, P. S., & Lee, C. T. (2008). Ground-motion attenuation relationships for subduction-zone earthquakes in Northeastern Taiwan. Bulletin of the Seismological Society of America, 98(1), 220–240. https://doi.org/10.1785/0120060002
    Macias, M., Atkinson, G. M., & Motazedian, D. (2008). Ground-motion Attenuation Aource, and Site Effects for the 26 September 2003 M 8.1 Tokachi-Oki Earthquake Sequence. Bulletin of the Seismological Society of America, 98(4), 1947–1963. https://doi.org/10.1785/0120070130
    McCaffrey, R. (2009). The Tectonic Framework of the Sumatran Subduction Zone. In Annual Review of Earth and Planetary Sciences (Vol. 37, pp. 345–366). https://doi.org/10.1146/annurev.earth.031208.100212
    McGuire, R. K., Cornell, C. A., & Toro, G. R. (2005). The Case for Using Mean Seismic Hazard. Earthquake Spectra, 21(3), 879–886. https://doi.org/10.1193/1.1985447
    Megawati, K., Pan, T. C., & Koketsu, K. (2003). Response Spectral Attenuation Relationships for Singapore and the Malay Peninsula Due to Distant Sumatran-fault Earthquakes. Earthquake Engineering and Structural Dynamics, 32(14), 2241–2265. https://doi.org/10.1002/eqe.326
    Montalvo-Arrieta, J. C., Pérez-Campos, X., Ramirez-Guzman, L., Sosa-Ramírez, R. L., Ruiz-Esparza, M. C., & Leonardo-Suárez, M. (2019). Macroseismic Intensities from the 19 September 2017 Mw 7.1 Puebla-Morelos Earthquake. Seismological Research Letters, 90(6), 2142–2153. https://doi.org/10.1785/0220190145
    Musson, R. M. W. (2012). PSHA Validated by Quasi Observational Means. Seismological Research Letters, 83(1), 130–134. https://doi.org/10.1785/gssrl.83.1.130
    Natawidjaja, D. H., Sieh, K., Chlieh, M., Galetzka, J., Suwargadi, B. W., Cheng, H., Edwards, R. L., Avouac, J. P., & Ward, S. N. (2006). Source Parameters of the Great Sumatran Megathrust Earthquakes of 1797 and 1833 Inferred from Coral Microatolls. Journal of Geophysical Research: Solid Earth, 111(6). https://doi.org/10.1029/2005JB004025
    Ornthammarath, T., Warnitchai, P., Chan, C. H., Wang, Y., Shi, X., Nguyen, P. H., Nguyen, L. M., Kosuwan, S., & Thant, M. (2020). Probabilistic Seismic Hazard Assessments for Northern Southeast Asia (Indochina): Smooth Seismicity Approach. Earthquake Spectra, 36(1_suppl), 69–90. https://doi.org/10.1177/8755293020942528
    Pagani, M., Hao, K. X., Fujiwara, H., Gerstenberger, M., & Ma, K. F. (2016). Appraising the PSHA Earthquake Source Models of Japan, New Zealand, and Taiwan. Seismological Research Letters, 87(6), 1240–1253. https://doi.org/10.1785/0220160101
    Pagani, M., Johnson, K., & Pelaez, J. G. (2021). Modelling Subduction Sources for Probabilistic Seismic Hazard Analysis. In Geological Society Special Publication (Vol. 501, Issue 1, pp. 225–244). Geological Society of London. https://doi.org/10.1144/SP501-2019-120
    Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., Henshaw, P., Butler, L., Nastasi, M., Panzeri, L., Simionato, M., & Vigano, D. (2014). Openquake Engine: An Open Hazard (and Risk) Software for the Global Earthquake Model. Seismological Research Letters, 85(3), 692–702. https://doi.org/10.1785/0220130087
    Pesicek, J. D., Thurber, C. H., Widiyantoro, S., Engdahl, E. R., & DeShon, H. R. (2008). Complex Slab Subduction Beneath Northern Sumatra. Geophysical Research Letters, 35(20). https://doi.org/10.1029/2008GL035262
    Petersen, M. D., Dewey, J., Hartzell, S., Mueller, C., Harmsen, S., Frankel, A. D., & Rukstales, K. (2004). Probabilistic Seismic Hazard Analysis for Sumatra, Indonesia and Across the Southern Malaysian Peninsula. Tectonophysics, 390(1–4), 141–158. https://doi.org/10.1016/j.tecto.2004.03.026
    Pranata, B., Yudistira, T., Saygin, E., Cummins, P. R., Widiyantoro, S., Brahmantyo, B., & Zulfakriza. (2018). Seismic Microzonation of Bandung Basin from Microtremor Horizontal-to-vertical Spectral Ratios (HVSR). AIP Conference Proceedings, 1987. https://doi.org/10.1063/1.5047289
    Qiu, Q., & Chan, C. H. (2019). Coulomb Stress Perturbation after Great Earthquakes in the Sumatran Subduction Zone: Potential Impacts in the Surrounding Region. Journal of Asian Earth Sciences, 180. https://doi.org/10.1016/j.jseaes.2019.103869
    Reiter, L. (1991). Earthquake hazard analysis: issues and insights. Columbia University Press.
    Sabetta, F., Lucantoni, A., Bungum, H., & Bommer, J. J. (2005). Sensitivity of PSHA Results to Ground Motion Prediction Relations and Logic-tree Weights. Soil Dynamics and Earthquake Engineering, 25(4), 317–329. https://doi.org/10.1016/j.soildyn.2005.02.002
    Scherbaum, F., Bommer, J. J., Bungum, H., Cotton, F., & Abrahamson, N. A. (2005). Composite Ground-motion Models and Logic Trees: Methodology, Sensitivities, and Uncertainties. Bulletin of the Seismological Society of America, 95(5), 1575–1593. https://doi.org/10.1785/0120040229
    Scherbaum, F., & Kuehn, N. M. (2011). Logic Tree Branch Weights and Probabilities: Summing up to One is Not Enough. In Earthquake Spectra (Vol. 27, Issue 4, pp. 1237–1251). Earthquake Engineering Research Institute. https://doi.org/10.1193/1.3652744
    Şeşetyan, K., Tümsa, M. B. D., & Akinci, A. (2019). Evaluation of the Seismic Hazard in the Marmara region (Turkey) based on Updated Databases. Geosciences (Switzerland), 9(12). https://doi.org/10.3390/geosciences9120489
    Shaw, B. E., Milner, K. R., Field, E. H., Richards-Dinger, K., Gilchrist, J. J., Dieterich, J. H., & Jordan, T. H. (2018). A physics-based earthquake simulator replicates seismic hazard statistics across California. In Sci. Adv (Vol. 4).
    Sieh, K., & Natawidjaja, D. (2000). Neotectonics of the Sumatran Fault, Indonesia. Journal of Geophysical Research: Solid Earth, 105(B12), 28295–28326. https://doi.org/10.1029/2000jb900120
    Sieh, K., Natawidjaja, D. H., Meltzner, A. J., Shen, C.-C., Cheng, H., Li, K.-S., Suwargadi, B. W., Galetzka, J., Philibosian, B., & Edwards, R. L. (2008). Earthquake Supercycles Inferred from Sea-level Changes Recorded in the Corals of west Sumatra. Science, 322(5908), 1674–1678.
    Singh, S. C., Carton, H., Tapponnier, P., Hananto, N. D., Chauhan, A. P. S., Hartoyo, D., Bayly, M., Moeljopranoto, S., Bunting, T., Christie, P., Lubis, H., & Martin, J. (2008). Seismic Evidence for Broken Oceanic Crust in the 2004 Sumatra Earthquake Epicentral Region. Nature Geoscience, 1(11), 777–781. https://doi.org/10.1038/ngeo336
    Strasser FO, Abrahamson NA and Bommer JJ (2009), “Sigma: Issues, Insights and Challenges,” Seism. Res. Lett., 80(1): 41–56.
    Stein, R. S. (1999). The role of stress transfer in earthquake occurrence. Nature, 402(6762), 605-609.
    Stirling, M. W., McVerry, G. H., & Gerstenberger, M. (2012). New National Seismic Hazard Model for New Zealand: Changes to Estimated Long-Term Hazard. Proc. 12th New Zealand society for earthquake engineering conference. 2012.
    Subarya, C., Chlieh, M., Prawirodirdjo, L., Avouac, J. P., Bock, Y., Sieh, K., Meltzner, A. J., Natawidjaja, D. H., & McCaffrey, R. (2006). Plate-boundary Deformation Associated with the great Sumatra-Andaman Earthquake. In Nature (Vol. 440, Issue 7080, pp. 46–51). Nature Publishing Group. https://doi.org/10.1038/nature04522
    Supendi, P., Rawlinson, N., Prayitno, B. S., Sianipar, D., Simanjuntak, A., Widiyantoro, S., Palgunadi, K. H., Kurniawan, A., Shiddiqi, H. A., Nugraha, A. D., Sahara, D. P., Daryono, D., Triyono, R., Adi, S. P., Karnawati, D., Daniarsyad, G., Ahadi, S., Fatchurochman, I., Anugrah, S. D., … Sudrajat, A. (2023). A Previously Unidentified Fault Revealed by the February 25, 2022 (Mw 6.1) Pasaman Earthquake, West Sumatra, Indonesia. Physics of the Earth and Planetary Interiors, 334. https://doi.org/10.1016/j.pepi.2022.106973
    Technical Reports on National Seismic Hazard Maps for Japan. (2009).
    Triyoso, W., & Sahara, D. P. (2021). Seismic Hazard Function Mapping Using Estimated Horizontal Crustal Strain Off West Coast Northern Sumatra. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.558923
    Triyoso, W., Suwondo, A., Yudistira, T., & Sahara, D. P. (2020). Seismic Hazard Function (SHF) study of coastal sources of Sumatra Island: SHF evaluation of Padang and Bengkulu cities. Geoscience Letters, 7(1). https://doi.org/10.1186/s40562-020-00151-x
    Wang, Y. J., Chan, C. H., Lee, Y. T., Ma, K. F., Shyu, J. B. H., Rau, R. J., & Cheng, C. T. (2016). Probabilistic Seismic Hazard Assessment for Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 27(3), 325–340. https://doi.org/10.3319/TAO.2016.05.03.01(TEM)
    Wells, D. L., & Coppersmith, K. J. (1994). New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. In Bulletin of the Seismological Society of America (Vol. 84, Issue 4).
    Wulandari, R., Chan, CH. & Wibowo, A. The 2022 Mw6.2 Pasaman, Indonesia, earthquake sequence and its implication of seismic hazard in central-west Sumatra. Geosci. Lett. 10, 25 (2023). https://doi.org/10.1186/s40562-023-00279-6
    Youngs, R. R., & Coppersmith, K. J. (1985). Implications of Fault Slip Rates and Earthquake Recurrence Models to Probabilistic Seismic Hazard Estimates. In Bulletin of the Seismological Society of America (Vol. 75, Issue 4). http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/75/4/939/5332825/bssa0750040939.pdf
    Zhao, J. X., Liang, X., Jiang, F., Xing, H., Zhu, M., Hou, R., Zhang, Y., Lan, X., Rhoades, D. A., Irikura, K., Fukushima, Y., & Somerville, P. G. (2016). Ground-motion Prediction Equations for Subduction Interface Earthquakes in Japan Using Site Class and Simple Geometric Attenuation Functions. Bulletin of the Seismological Society of America, 106(4), 1518–1534. https://doi.org/10.1785/0120150034
    Zhao, J. X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., Ogawa, H., Irikura, K., Thio, H. K., Somerville, P. G., Fukushima, Y., & Fukushima, Y. (2006). Attenuation Relations of Strong Ground Motion in Japan Using Site Classification based on Predominant Period. Bulletin of the Seismological Society of America, 96(3), 898–913. https://doi.org/10.1785/0120050122

    QR CODE
    :::