跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭喬育
Chiao-Yu Kuo
論文名稱: 有機陽離子之鉛鹵素鈣鈦礦長晶研究
指導教授: 吳春桂
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 136
中文關鍵詞: 鉛鹵素鈣鈦礦長晶
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以鉛鹵素鈣鈦礦做為主動層之鈣鈦礦太陽能電池(Perovskite solar cell, PSC) ,因其高的光電轉換效率獲得大家高度的重視。而為了瞭解應用於太陽能電池之鈣鈦礦的物理性質,科學家們合成出各種組成的鈣鈦礦單晶進行研究。本研究以能夠快速長晶的逆溫長晶法,用GBL或GBL與DMF的混合溶液作為溶劑,搭配不同比例的陽離子、鉛與鹵素混合成長晶母液,在不同加熱溫度下成長出不同組成之混陰陽離子鉛鈣鈦礦單晶。研究結果顯示, 以MA(0.93-x)FAxCs0.07PbI3母液所長出一系列單晶的晶體內沒有Cs離子的存在,並且其最大放光波長略低於MAxFA(1-x) PbI3母液所長出單晶的最大放光波長。當長晶母液中鈣鈦礦的劑量為MAxFA(1-x)PbBr1.5I1.5時,溶液中FA比例增加時所長出晶體中的FA比例同樣增加,而溴離子則隨之減少。從劑量為MA0.5FA0.5PbBraI(3-a)長晶母液中所製備之單晶,當母液中之碘離子占鹵素離子的比例大於60%時,晶體中碘離子的比例會大幅增加,晶體形狀也從cubic逐漸變為tetragonal,而晶體放光波長也隨著晶體中碘離子比例增加而變長。以含MA(1-y)CsyPbBr0.6I2.4長晶母液所製備之單晶以能量色散X-射線譜(Energy Dispersive Spectrometer, EDS)所測得之晶體中各個原子之含量,顯示當母液中Cs離子為2%時得到的晶體中並沒有Cs離子,而母液中Cs離子為5%時得到的晶體中Cs離子也只占了0.4%,但當母液中Cs離子為7%時得到的晶體中Cs離子含量迅速增加至8%。


    Abstract Perovskite solar cells (PSCS) based on lead-halide perovskite absorber have attracted great attention due to their high power conversion efficiency and non-expensive solution fabrication processes. To be understand better the instrinic properties of lead-halide perovskite, single crystals were prepared and studied. In this study, inverse temperature crystallization method was used to grow perovskite with various components. GBL or the mixture of GBL and DMF was used as solvents to dissolve several starting materials with various mole ratios to form a mother solutions for single crystals. We found that even the mother solution contains MA(0.93-x), FAx, Cs0.07, Pb, and l3 but the single crystal grown from it did not have Cs+ ion. Furthermore, the λEM of the PL is shorter than that of the crystal from from MaxFA(1-x)PbBr3-xIx. The FA content for the crystal increase as the FA in the mother solution increases and Br ion in the crystal decreases. For the mother solution containing MA05FA05PbBr(3-a)Ia, the I- content increase sharply when I/Br ratio is higher than 1.5, at the same time the morphology of the crystal change from cubic to tetragonal and the λEM of the PL shifts to longer wavelength. For the mother solution with the content of MA(1-x)CsxPbBr0.6I2.4, when the Cs/MA is less than 2%, the crystal grown from it contains no Cs as revealed with EDS analysis. Increasing the Cs content in the mother solution to 5%, the Cs content in the crystal increases to 0.4%, nevertheless, when the Cs in the mother solution increases to 7%, the Cs in crystal increases rapidly to 8%.

    摘要 I Abstract II 摘要圖 III 謝誌 IV 目錄 V 圖目錄 VIII 表目錄 XII 附圖目錄 XIV 壹、 序論 1 1-1、 前言 1 1-2、 鈣鈦礦的結構 1 1-3、 鈣鈦礦太陽能電池主動層主要成分 2 1-4、 鈣鈦礦單晶 4 1-5、 混合鹵素與混合陽離子之鈣鈦礦單晶 8 1-6、 本實驗室先前的長晶研究 15 1-7、 研究動機 19 貳、 實驗 20 2-1、 實驗藥品 20 2-2、 儀器分析與樣品製備 20 2-2-1、 核磁共振光譜儀(Nuclear Magnetic Resonance)儀器型號:Bruker 300 & Bruker 500 20 2-2-2、 紫外光/可見光吸收光譜儀(UV/Vis Spectrometer)儀器型號:Cary 300 Bio 21 2-2-3、 顯微拉曼螢光光譜儀(Micro-Raman/PL Spectrometer, UniRAM) 21 2-2-4、 X光繞射儀(X-Ray Diffraction, Bruker D8 Discover) 22 2-2-5、 掃描電子顯微鏡(Scanning Electron Microscope, HITACHI S-800)與能量色散X-射線光譜(Energy Dispersive Spectrometer) 22 2-3、 實驗步驟 24 2-3-1、 起始物的合成 24 1. 甲基碘化銨 24 2. 甲脒氫碘酸鹽 24 2-3-2、 長晶條件 25 1. 混陽離子Fa(1-x) MAxPbI3之鈣鈦礦晶體的製備 25 2. 混陽離子FAxMA(0.93-x)Cs0.07PbI3之鈣鈦礦晶體的製備 26 3. 混陰陽離子FaxMA(1-x)PbI1.5Br1.5之鈣鈦礦晶體的製備 27 4. 混陰陽離子Fa0.5MA0.5I(3-a)Bra之鈣鈦礦晶體的製備 28 5. 混陰陽離子MA(1-x)CsxPbBr0.6I2.4之鈣鈦礦晶體的製備 29 參、 結果與討論 30 3-1、 混陽離子之鈣鈦礦晶體的製備 30 3-1-1、 混陽離子FA(1-x)MAxPbI3之鈣鈦礦晶體的製備 30 3-1-2、 混陽離子FAxMA(0.93-x)Cs0.07PbI3之鈣鈦礦晶體的製備 36 3-2、 混陰陽離子之鈣鈦礦晶體的製備 41 3-2-1、 FAxMA(1-x)PbI1.5Br1.5單晶的製備 41 3-2-2、 FA0.5MA0.5PbI(3-a)Bra單晶的製備 50 3-2-3、 MA(1-x)CsxPbBr0.6I2.4單晶的製備 60 肆、 結論 65 伍、 參考文獻 66 附錄 73 附錄 1、tolerance factor計算 73 附錄 2、1H-NMR圖譜 74 附錄 3、螢光光譜圖 83 附錄 4、UV-vis吸收光譜圖 92 附錄 5、能量色散X-射線譜 99

    [1] Janez Potočnik, “Renewable Energy Sources and the Realities of Setting an Energy Agenda”, Science 2007, 315, 810-811.
    [2] R. F. Service, “Solar Report Sets the Agenda”, Science 2005, 309, 549-549.
    [3] Qingfeng Dong, Yanjun Fang, Yuchuan Shao, Padhraic Mulligan, Jie Qiu, Lei Cao, Jinsong Huang “Electron-Hole Diffusion Lengths > 175 μm in Solution-Grown CH3NH3PbI3 Single Crystals.” Science, 2015, 347, 967-970.
    [4] Constantinos C. Stoumpos, Christos D. Malliakas, and Mercouri G. Kanatzidis, “Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties”, Inorg. Chem. 2013, 52, 9019-9038.
    [5] Yangyang Dang, Yang Liu, Youxuan Sun, Dongsheng Yuan, Xiaolong Liu, Weiqun Lu, Guangfeng Liu, Haibing Xia and Xutang Tao “Bulk crystal growth of hybrid perovskite material CH3NH3PbI3” CrystEngComm, 2015, 17, 665-670
    [6] Makhsud I. Saidaminov, Ahmed L. Abdelhady, Banavoth Murali, Erkki Alarousu, Victor M. Burlakov, Wei Peng, Ibrahim Dursun, Lingfei Wang, Yao He, Giacomo Maculan, Alain Goriely, TomWu, Omar F. Mohammed & Osman M. Bakr “High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization” Nature Communications, 2015, 6, 7586-7586.
    [7] Giacomo Maculan, Arif D. Sheikh, Ahmed L. Abdelhady, Makhsud I. Saidaminov, Md Azimul Haque, Banavoth Murali, Erkki Alarousu, Omar F. Mohammed, Tom Wu, and Osman M. Bakr “CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector” J. Phys. Chem. Lett., 2015, 6, 3781-3786
    [8] Makhsud I. Saidaminov, Ahmed L. Abdelhady, Giacomo Maculan and Osman M. Bakr “Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth” Chem. Commun., 2015, 51, 17658-17661.
    [9] Yucheng Liu, Zhou Yang, Dong Cui, Xiaodong Ren, Jiankun Sun, Xiaojing Liu, Jingru Zhang, Qingbo Wei, Haibo Fan, Fengyang Yu, Xu Zhang, Changming Zhao, and Shengzhong (Frank) Liu “Two-Inch-Sized Perovskite CH3NH3PbX3 (X=Cl, Br, I) Crystals: Growth and Characterization” Adv. Mater. 2015, 27, 5176-5183.
    [10] Yucheng Liu, Jiankun Sun, Zhou Yang, Dong Yang, Xiaodong Ren, Hua Xu, Zupei Yang, Shengzhong (Frank) Liu “20-mm-Large Single-Crystalline Formamidinium-Perovskite Wafer for Mass Production of Integrated Photodetectors.” Adv. Opt. Mater. 2016, 4, 1829-1837.
    [11] Michael Saliba, Taisuke Matsui, Ji-Youn Seo, Konrad Domanski, Juan-Pablo Correa-Baena, Mohammad Khaja Nazeeruddin, Shaik M. Zakeeruddin, Wolfgang Tress, Antonio Abate, Anders Hagfeldt and Michael Grätzel “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency” Energy Environ. Sci., 2016, 9, 1989-1997.
    [12] Nam Joong Jeon, Hyejin Na, Eui Hyuk Jung, Tae-Youl Yang, Yong Guk Lee1, Geunjin Kim, Hee-Won Shin, Sang Il Seok, Jaemin Lee and Jangwon Seo “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells” Nature Energy, 2018, 3, 682-689.
    [13] Taiyang Zhang, Mengjin Yang, Eric E. Benson, Zijian Li, Jao van de Lagemaat, Joseph M. Luther, Yanfa Yan, Kai Zhu and Yixin Zhao “A Facile Solvo-Thermal Growth of Single Crystal Mixed Halide perovskite CH3NH3Pb(Br1-xClx)3” Chem. Commun. 2015, 51, 7820-7823.
    [14] Yanjun Fang, Qingfeng Dong, Yuchuan Shao, Yongbo Yuan and Jinsong Huang “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination” Nat. Photon. 2015, 9, 679-686.
    [15] Yunxia Zhang, Yucheng Liu, Yajuan Li, Zhou Yang and Shengzhong (Frank) Liu “Perovskite CH3NH3Pb(BrxI1-x)3 single crystals with controlled composition for fine-tuned bandgap towards optimized optoelectronic applications” J. Mater. Chem. C, 2016, 4, 9172-9178.
    [16] Zhipeng Lian, Qingfeng Yan, Taotao Gao, Jie Ding, Qianrui Lv, Chuangang Ning, Qiang Li and Jia-lin Sun “Perovskite CH3NH3PbI3(Cl) Single Crystals: Rapid Solution Growth, Unparalleled Crystalline Quality, and Low Trap Density toward 108 cm−3” J. Am. Chem. Soc. 2016, 138, 9409-9412.
    [17] Yuan Huang, Liang Li, Zonghao Liu, Haoyang Jiao, Yuqing He, Xiaoge Wang, Rui Zhu, Dong Wang, Junliang Sun, Qi Chen and Huanping Zhou “The intrinsic properties of FA(1-x)MAxPbI3 perovskite single crystals”, J. Mater. Chem. A, 2017, 5, 8537-8544.
    [18] Songjie Du, Lin Jing, Xiaohua Cheng, Ye Yuan, Jianxu Ding, Tianliang Zhou, Xaoyuan Zhan, and Hongzhi Cui, “Incorporation of Cesium Ions into MA1−xCsxPbI3 Single Crystals: Crystal Growth, Enhancement of Stability, and Optoelectronic Properties”, J. Phys. Chem. Lett., 2018, 9, 5833-5839.
    [19] Olga Nazarenko, Sergii Yakunin, Viktoriia Morad1, Ihor Cherniukh1 and Maksym V Kovalenko “Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry”, NPG Asia Materials, 2017, 9, e373.
    [20] 中央大學化學系 徐睿謙 碩士論文
    [21] Le Wang, Zhiqiang Liu, Ruifei Duan, Guodong Yuan, F. Huang, T. B. Wei, Z. Q. Liu, J. X. Wang and J. M. Li “Tunable bandgap in hybrid perovskite CH3NH3Pb(Br3−yXy) single crystals and photodetector applications“ AIP Advances, 2016, 6, 45115.
    [22] Tao Ye, Weifei Fu, Jiake Wu, Zhikai Yu, Xinyi Jin, Hongzheng Chen and Hanying Li “Single-crystalline lead halide perovskite arrays for solar cells” J. Mater. Chem. A, 2016, 4, 1214-1217.
    [23] Ting Wu, Mahshid Ahmadi and Bin Hu “Giant current amplification induced by ion migration in perovskite single crystal photodetectors” J. Mater. Chem. C, 2018, 6, 8042-8050.
    [24] Shuigen Li, Chen Zhang, Jiao-Jiao Song, Xiaohu Xie, Jian-Qiao Meng and Shunjian Xu “Metal Halide Perovskite Single Crystals:From Growth Process to Application” Crystals, 2018, 8, 220-220.
    [25] Yucheng Liu, Zhou Yang, and Shengzhong (Frank) Liu “Recent Progress in Single-Crystalline Perovskite Research Including Crystal Preparation, Property Evaluation, and Applications” Adv. Sci. 2018, 5, 1700471.
    [26] Dong Shi, Valerio Adinolfi, Riccardo Comin, Mingjian Yuan, Erkki Alarousu, Andrei Buin, Yin Chen, Sjoerd Hoogland, Alexander Rothenberger, Khabiboulakh Katsiev, Yaroslav Losovyj, Xin Zhang, Peter A. Dowben, Omar F. Mohammed, Edward H. Sargent and Osman M. Bakr “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals” Science, 2015, 347, 519-522.
    [27] Yucheng Liu, Yunxia Zhang, Zhou Yang, Dong Yang, Xiaodong Ren, Liuqing Pang, and Shengzhong (Frank) Liu “Thinness- and Shape-Controlled Growth for Ultrathin Single-Crystalline Perovskite Wafers for Mass Production of Superior Photoelectronic Devices” Adv. Mater., 2016, 28, 9204-9209.
    [28] Guichuan Xing, Nripan Mathews, Shuangyong Sun, Swee Sien Lim, Yeng Ming Lam, Michael Grätzel, Subodh Mhaisalkar, Tze Chien Sum “Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3” Science, 2013, 342, 344-347.
    [29] Tao Ye, Xizu Wang, Xianqiang Li, Alex Qingyu Yan, Seeram Ramakrishna and Jianwei Xu "Ultra-high Seebeck coefficient and low thermal conductivity of a centimeter-sized perovskite single crystal acquired by a modified fast growth method" J. Mater. Chem. C, 2017, 5, 1255-1260.
    [30] Ayan A. Zhumekenov, Makhsud I. Saidaminov, Md Azimul Haque, Erkki Alarousu, Smritakshi Phukan Sarmah, Banavoth Murali, Ibrahim Dursun, Xiao-He Miao, Ahmed L. Abdelhady,†, Tom Wu, Omar F. Mohammed, and Osman M. Bakr Formamidinium Lead Halide Perovskite Crystals with Unprecedented Long Carrier Dynamics and Diffusion Length" ACS Energy Lett., 2016, 1, 32-37
    [31] Dong Shi, Valerio Adinolfi, Riccardo Comin, Mingjian Yuan, Erkki Alarousu, Andrei Buin, Yin Chen, Sjoerd Hoogland, Alexander Rothenberger, Khabiboulakh Katsiev, Yaroslav Losovyj, Xin Zhang, Peter A. Dowben, Omar F. Mohammed, Edward H. Sargent, and Osman M. Bakr "Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals" Science, 2015, 347, 519-522
    [32] Samuel D. Stranks, Giles E. Eperon, Giulia Grancini, Christopher Menelaou, Marcelo J. P. Alcocer, Tomas Leijtens, Laura M. Herz, Annamaria Petrozza, Henry J. Snaith "Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber" Science, 2013, 342, 341-344
    [33] Qifeng Han, Sang-Hoon Bae, Pengyu Sun, Yao-Tsung Hsieh, Yang (Michael) Yang, You Seung Rim, Hongxiang Zhao, Qi Chen, Wangzhou Shi, Gang Li, and Yang Yang "Single Crystal Formamidinium Lead Iodide (FAPbI3): Insightinto the Structural, Optical, and Electrical Properties" Adv. Mater., 2016, 28, 2253-2258
    [34] Tao Ye, Xizu Wang, Xianqiang Li, Alex Qingyu Yan, Seeram Ramakrishna and Jianwei Xu "Ultra-high Seebeck coefficient and low thermal conductivity of a centimeter-sized perovskite single crystal acquired by a modified fast growth method" J. Mater. Chem. C, 2017, 5, 1255-1260
    [35] Wu-Qiang Wu, Zhibin Yang, Peter N. Rudd, Yuchuan Shao, Xuezeng Dai, Haotong Wei, Jingjing Zhao, Yanjun Fang, Qi Wang, Ye Liu, Yehao Deng, Xun Xiao, Yuanxiang Feng, Jinsong Huang "Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells" Science advances, 2019, 5, eaav8925
    [36] Jason J. Yoo, Sarah Wieghold, Melany C. Sponseller, Matthew R. Chua, Sophie N. Bertram,a Noor Titan Putri Hartono, Jason S. Tresback, Eric C. Hansen, Juan-Pablo Correa-Baena, Vladimir Bulovic´, Tonio Buonassisi, Seong Sik Shin and Moungi G. Bawendi "An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss" Energy Environ. Sci., 2019, 12, 2192-2199
    [37] Min Hu , Linfeng Liu , Anyi Mei , Ying Yang , Tongfa Liu and Hongwei Han“ Efficient hole-conductor-free, fully printable mesoscopicperovskite solar cells with a broad light harvester NH2CHNH2PbI3” J. Mater. Chem. A, 2014, 2, 17115-17121
    [38] Seungchan Ryu, Jun Hong Noh, Nam Joong Jeon, Young Chan Kim, Woon Seok Yang, Jangwon Seoa and Sang Il Seok, “Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor”, Energy Environ. Sci, 2014, 7, 2614-2618
    [39] Michael Saliba, Taisuke Matsui, Ji-Youn Seo, Konrad Domanski, Juan-Pablo Correa-Baena, Mohammad Khaja Nazeeruddin, Shaik M. Zakeeruddin, Wolfgang Tress, Antonio Abate, Anders Hagfeldt, Michael Grätzel,“Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency ” Energy Environ Sci, 2016, 6, 1989-1997

    QR CODE
    :::