| 研究生: |
葛春明 Chuen-Ming Gee |
|---|---|
| 論文名稱: |
電化學剝離奈米石墨片性質研究 |
| 指導教授: |
陳志臣
Jyh-Chen Chen |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 電化學剝離 、雙層石墨烯片 、寡層石墨烯 、石墨烯墨水 、透明電極 、熱傳導 |
| 外文關鍵詞: | Electrochemical exfoliation, Bilayer graphene sheets, Few-layer graphene, Graphene ink, Transparent electrodes, Heat conduction |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出以天然石墨與瀝青經熱壓成型製作石墨胚體,後續經不同溫度熱處理,以此製備的石墨塊材做為電極,並以不同石墨原料作比較,利用電化學剝離製程,將塊狀石墨材或不同石墨原料剝離出石墨薄片,探討熱處理溫度與不同石墨原料對剝離出石墨薄片性質影響,以拉曼光譜儀(Raman)鑑定材料的特性、光學顯微鏡(OM)與掃瞄式電子顯微鏡(SEM)觀察剝離石墨薄片型態、原子力顯微鏡(AFM)掃瞄厚度與表面形貌及化學分析電子能譜(XPS/ESCA)量測表面官能基團鍵結。
電極材料不選用價格昂貴之高純度石墨棒、高結晶度天然石墨片或高方向性熱裂解石墨,改用一般工業用天然石墨片與脈石墨及瀝青作為起始原料並製備為石墨電極,以電化學剝離製程,可獲得大量石墨薄片。
本研究中,自製石墨電極經不同熱處理溫度後,利用電化學剝離出之石墨薄片,尺寸差異性不大。若自製石墨電極以Z軸方向切割,增加石墨結構邊緣的暴露面積,以電化學剝離出之石墨薄片,其尺寸增加約1.5–2倍,並可得到層數較少、均勻的石墨薄片。
比較自製石墨電極與天然石墨以電化學剝離出之石墨薄片,其尺寸分佈約十微米左右,而脈石墨剝離出之石墨薄片尺寸較小,約數百奈米至數微米,這與脈石墨中石墨層排列方向較不一致有關,但厚度尺寸大致相同。
以噴塗方式將穩定分散之石墨烯墨水製作成透明導電膜,試樣之透光率約為70%,片電阻約為1.35 x 105 Ω/square。進一步將試樣退火處理,相同透光率之電阻值下降,退火處理後試樣之電阻約降低16-24%。另以抽濾方式將穩定分散之石墨烯墨水製備石墨烯紙,厚度約5μm之石墨烯紙,X-Y平面與Z垂直方向熱傳導係數各約為~600 W/m•K與5.5 W/m•K,X-Y平面之熱傳導係數較傳統金屬塊材高,且其價格便宜,局部高溫熱源可快速地於水平方向散開,另其厚度薄,未來可考慮取代熱界面材料應用,成為具有潛力之導熱材料。
This study proposes an approach to synthesis graphite nano-plates by electrochemical exfoliation (EC) with graphite bulks as raw materials, where the graphite was manufactured artificially from thermoforming of natural graphite and pitch with different temperatures. Based on such electrochemical exfoliation method, the effects of thermal treatment temperatures and different graphite raw materials on the properties of exfoliated nano-plates were investigated. The quality of graphite nano-plates was identified by Raman spectroscopy. The morphologies of the samples were carried out by optical microscope (OM) and scanning electron microscope (SEM). Atomic force microscopy (AFM) was used to measure the thickness of graphite nano-plates. X-ray Photoelectron Spectroscopy (XPS) or Electron Spectroscopy for Chemical Analysis (ESCA) was used to identify the surface functional groups.
In this study, the expansive high-purity graphite rods, single-crystal natural graphite flake or highly oriented pyrolytic graphite (HOPG), were frequently used in industry, were replaced by our prepared artificial graphite. The as prepared graphite, as electrode in EC process, was made from natural graphite flakes, vein graphite and pitch as starting materials. The results indicate that graphite nano plates can be successfully obtained with high quality and large-scale production by using as-prepared artificial graphite. Moreover, it was found out that the lateral size of exfoliated nano-plates was independent to the heat treatment temperatures of as-prepared graphite. With specific cutting orientation in Z-axis direction, the graphite edge were observed to be highly exposed, leading to larger size (1.5-2 times), few-layered and excellent uniform of graphene nano-plates after subjected to EC process. Compare our prepared graphite with natural graphite, it was found out the lateral size distribution of exfoliated nano-plates was about ten microns, which was larger than that of vein graphite(about several hundred nanometers to several microns). This is possibly due to the lower ordering of graphitic orientation on vein graphite. However, it was worthy noting that the thickness of nano-plates was roughly the same.
For particle application, it was demonstrated that transparent conducting films could be made by the suspended graphite nano-plates, the so-called graphene-ink. The sample was coated on transparent substrate by air spraying method. The results show that the sheet resistance was 1.35 x 105 Ω/square with 70% light transmittance. The resistance of the films can be significantly decreased by post-treatment, indicating that the sheet resistance may decrease to 16–24% after thermal treatment. The graphene paper fabricated through filtration process provides the highly quality and massive graphene sheets. The paper thickness was about 5 μm. The in-plane and cross-plane thermal conductivity of the graphene paper can reach about 600 and 5.5 W/m•K measured by the laser flash method respectively. The in-plane thermal conductivity was higher than most metal and lower cost. The local heat spot was transferred much faster to be spread out in the horizontal direction. Moreover, the additional advantage of graphene paper was mainly on the ultra-thin thickness when compared to that of most commercial thermal interface materials (TIMs). The as-prepared graphene paper shows potential to be high performance thermal conductivity material in the future.
[1]F. Qin and C. Brosseau, ”A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles”, Journal of Applied Physics, 111 (6), 061301, 2012.
[2]T. D. Burchell, “Carbon Materials for Advanced Technologies”, Elsevier Science Ltd., Oxford, 1999.
[3]M. Inagaki, “New Carbons - Control of Structure and Functions”, Elsevier Science Ltd., Oxford, 2000.
[4]Nobuyuki Murofushi, “Focusing on the commercial aspect of carbon”, Tanso, 248, 105-111, 2011.
[5]H. W. Kroto, J. R. Heath, S. C. O'Brien , R. F. Curl and R. E. Smalley, “C60: Buckminsterfullerene”, Nature, 318 (6042), 162-163, 1985.
[6]S. Iijima, “Helical Microtubules of Graphitic Carbon”, Nature, 354 (6348), 56-58, 1991.
[7]S. Cui, P. Scharff, C. Siegmund, D. Schneider, K. Risch, S. Klötzer, L. Spiess, H. Romanus and J. Schawohl, “Investigation on reparation of Multiwalled Carbon Nanotubes by DC Arc Discharge Under N2 Atmosphere”, Carbon, 42 (5), 931-939, 2004.
[8]S. Noriaki, “Formation of Multi-Shelled Carbon Nanoparticles by Arc Discharge in Liquid Benzene”, Materials Chemistry and Physics, 88, 235- 238, 2004.
[9]H. H. Kim and H. J. Kim, “The Preparation of Carbon Nanotubes by DC Arc Discharge Using a Carbon Cathode Coated With Catalyst”, Materials Science and Engineering B, 130, 73-80, 2006.
[10]N. D. Mermin and H. Wagner, “Absence of ferromagnetism or antiferromagnetism in one- or two - dimensional isotropic heisenberg models”, Physical Review Letters, 17 (22), 1133-1136, 1966.
[11]J. W. McClure, “Diamagnetism of Graphite”, Physical Review, 104 (3), 666, 1956.
[12]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science, 306 (5696), 666-669, 2004.
[13]Y. W. Son, “Physics of Graphene and Graphene Nanoribbons”, Colloquium, Department of Physics Yonsei University, 5, 12, 2007.
[14]A. K. Geim and K. S. Novoselov, “The Rise of Graphene”, Nature Materials, 6 (3), 183-191, 2007.
[15]A. Chuvilin, U. Kaiser, E. Bichoutskaia, N. A. Besley and A. N. Khlobystov, “Direct Transformation of Graphene to Fullerene”, Nature Chemistry, 2 (6), 450-453, 2010.
[16]D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev B. K. Price and J. M. Tour, “Longitudinal Unzipping of Carbon Nanotubes to Form Graphene Nanoribbons”, Nature, 458 (7240), 872-876, 2009.
[17]L. Jiao, X. Wang, G. Diankov, H. Wang and H. Dai, “Facile Synthesis of High-Quality Graphene Nanoribbons”, Nature Nanotechnology, 5 (5), 321-325, 2010.
[18]Z. Zhang, Z. Sun, J. Yao, D. V. Kosynkin and J. M. Tour, “Transforming Carbon Nanotube Devices Into Nanoribbon Devices”, Journal of the American Chemical Society, 131 (37), 13460-13463, 2009.
[19]L. Jiao, L. Zhang, X. Wang, G. Diankov and H. Dai, “Narrow Graphene Nanoribbons From Carbon Nanotubes”, Nature, 458 (7240), 877-880, 2009.
[20]J. C. Meyer, A. K. Geim, M. I. Katsnelson K. S. Novoselov, T. J. Booth and S. Roth, “The structure of suspended graphene sheets”, Nature, 446 (7131), 60-63, 2007.
[21]A. Fasolino, J. H. Los and M. I. Katsnelson, “Intrinsic Ripples in Graphene”, Nature Materials, 6 (11), 858-861, 2007.
[22]P. Avouris, Z. Chen and V. Perebeinos, “Carbon-Based Electronics”, Nature Nanotechnology, 2 (10), 605-615, 2007.
[23]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, “Two-Dimensional Gas of Massless Dirac Fermions in Graphene”, Nature, 438 (7065), 197-200, 2005.
[24]C. L. Kane, “Materials Science: Erasing electron mass”, Nature, 438 (7065), 168-170, 2005.
[25]S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari and F. Mauri, “Breakdown of the Adiabatic Born-Oppenheimer Approximation in Graphene”, Nature Materials, 6 (3), 198-201, 2007.
[26]M. I. Katsnelson, “Graphene: carbon in two dimensions”, Materials today, 10 (1), 20-27, 2007.
[27]K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim, “Two-dimensional atomic crystals”, Proceedings of the National Academy of Sciences of the United States of America, 102 (30), 10451-10453, 2005.
[28]H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen and A. F. Morpurgo, “Bipolar supercurrent in graphene”, Nature, 446 (7131), 56-59, 2007.
[29]M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, “Graphene-Based Ultracapacitors”, Nano Letters, 8 (10), 3498–3502, 2008.
[30]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, “Fine structure constant defines visual transparency of graphene”, Science, 320 (5881), 1308, 2008.
[31]F. Bonaccorso, Z. Sun, T. Hasan and A. C. Ferrari, “Graphene Photonics and Optoelectronics”, Nature Photonics, 4 (9), 611-622, 2010.
[32]V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov and A. K. Geim, “Spectroscopic Ellipsometry of Graphene and an Exciton-Shifted Van Hove Peak in Absorption”, Physical Review B, 81 (15), 155413, 2010.
[33]F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie and Y. R. Shen, “Gate-Variable Optical Transitions in Graphene”, Science, 320 (5873), 206-209, 2008.
[34]F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos and P. Avouris, “Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor”, Nano Letters, 9 (3), 1039-1044, 2009.
[35]T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov,A. K. Geim, A. C. Ferrari and A. Hartschuh, “Making Graphene Luminescent by Oxygen Plasma Treatment”, ACS Nano, 3 (12), 3963-3968, 2009.
[36]C. Lee, X. Wei, J. W. Kysar and J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”, Science, 321 (5887), 385-388, 2008.
[37]C. Lee, X. Wei, Q. Li, R. Carpick,J. W. Kysar and J. Hone, “Elastic and Frictional Properties of Graphene”, Physica Status Solidi (b), 246 (11-12), 2562-2567, 2009.
[38]A. A. Balandin, “Thermal Properties of Graphene and Nanostructured Carbon Materials”, Nature Materials, 10 (8), 569-581, 2011.
[39]P. Kim, L. Shi, A. Majumdar and P. McEuen, “Thermal Transport Measurements of Individual Multiwalled Nanotubes”, Physical Review Letters, 87 (21), 215502, 2001.
[40]E. Pop, D. Mann, Q. Wang, K. Goodson and H. Dai, “Thermal Conductance of an Individual Single-Wall Carbon Nanotube Above Room Temperature”, Nano Letters, 6 (1), 96-100, 2006.
[41]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene”, Nano Letters, 8 (3), 902-907, 2008.
[42]J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S. Ruoff and L. Shi, “Two-Dimensional Phonon Transport in Supported Graphene”, Science, 328 (5975), 213-216, 2010.
[43]S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao and C. N. Lau, “Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits”, Applied Physics Letters, 92(15), 151911-151913, 2008.
[44]Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy”, Nano Letters, 7 (9), 2758-2763, 2007.
[45]X. Geng, L. Niu, Z. Xing, R. Song, G. Liu, M. Sun, G. Cheng, H. Zhong, Z. Liu, Z. Zhang, L. Sun, H. Xu, L. Lu and L. Liu, “Aqueous‐Processable Noncovalent Chemically Converted Graphene–Quantum Dot Composites for Flexible and Transparent Optoelectronic Films”, Advanced Materials, 22 (5), 638-642, 2010.
[46]P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth and A. K. Geim, “Making graphene visible”, Applied Physics Letters, 91 (6), 063124, 2007.
[47]J. S. Park, A. Reina, R. Saito, J. Kong, G. Dresselhaus and M. S. Dresselhaus, “G′ band Raman spectra of single, double and triple layer graphene”, Carbon, 47 (5), 1303-1310, 2009.
[48]J. Luo, P. Tian, C. T. Pan, A. W. Robertson, J. H. Warner, E. W. Hill and G. A. D. Briggs, “Ultralow Secondary Electron Emission of Graphene”, ACS Nano, 5 (2), 1047-1055, 2011.
[49]H. M. A. Hassan, V. Abdelsayed, A. E. R. S. Khder, K. M. AbouZeid, J. Terner, M. S. El-Shall, S. I. Al-Resayes and A. A. El-Azhary, “Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media”, Journal of Materials Chemistry, 19 (23), 3832-3837, 2009.
[50]C. Gómez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern and U. Kaiser, “Atomic structure of reduced graphene oxide”, Nano Letters, 10 (4), 1144-1148, 2010.
[51]Ç. Ö. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, L. Yang, C. H. Park, M. F. Crommie, M. L. Cohen, S. G. Louie and A. Zettl, “Graphene at the edge: stability and dynamics”, Science, 323 (5922), 1705-1708, 2009.
[52]J. C. Meyer, C. Kisielowski, R. Erni, M. D. Rossell, M. F. Crommie and A. Zettl, “Direct imaging of lattice atoms and topological defects in graphene membranes”, Nano Letters, 8 (11), 3582-3586, 2008.
[53]M. H. Gass, U. Bangert, A. L. Bleloch, P. Wang, R. R. Nair and A. K. Geim, “Free-standing graphene at atomic resolution”, Nature Nanotechnology, 3 (11), 676-681, 2008.
[54]V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker and S. Seal, “Graphene Based Materials: Past, Present and Future”, Progress in Materials Science, 56 (8), 1178–1271, 2011.
[55]J. I. Paredes, S. Villar-Rodil, P. Solis-Fernández, A. Martinez-Alonso and J. M. D. Tascón, “Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide”, Langmuir, 25 (10), 5957-5968, 2009.
[56]S. Prawer, K. W. Nugent, D. N. Jamieson, J. O. Orwa, L. A. Bursill and J. L. Peng, “The Raman spectrum of nanocrystalline diamond”, Chemical Physics Letters, 332 (1-2), 93-97, 2000.
[57]A. C. Ferrari and J. Robertson, “Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon”, Physical Review B, 64 (7), 075414, 2001.
[58]J. Wei, B. Jiang, X. Zhang, H. Zhu and D. Wu, “Raman study on double-walled carbon nanotubes”, Chemical Physics Letters, 376 (5-6), 753-757, 2003.
[59]L. M. Malard, J. Nilsson, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, A. H. Castro Neto and M. A. Pimenta, “Probing the electronic structure of bilayer graphene by Raman scattering”, Physical Review B, 76 (20), 201401, 2007.
[60]A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman spectrum of graphene and graphene layers”, Physical Review Letters, 97 (18), 187401, 2006.
[61]F. Liu, P. Ming and J. Li, “Ab initio calculation of ideal strength and phonon instability of graphene in tension”, Physical Review B, 76 (6), 064120, 2007.
[62]J. R. Dahn, T. Zheng, Y. Liu and J. S. Xue, “Mechanisms for lithium insertion in carbonaceous materials”, Science, 270 (5236), 590-593, 1995.
[63]Y. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene”, Nature, 438 (7065), 201-204, 2005.
[64]K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim and A. K. Geim, “Room-temperature Quantum Hall effect in graphene”, Science, 315 (5817), 1379, 2007.
[65]J. R. Williams, L. DiCarlo and C. M. Marcus, “Quantum Hall effect in a gate-controlled p-n junction of graphene”, Science, 317 (5838), 638-641, 2007.
[66]W. Y. Kim and K. S. Kim, “Prediction of very large values of magnetoresistance in a graphene nanoribbon device”, Nature Nanotechnology, 3 (7), 408-412, 2008.
[67]K. S. Novoselov, V. I. Fal′ko, L. Colombo, P. R. Gellert, M. G. Schwab and K. Kim, “A roadmap for graphene”, Nature, 490 (7419), 192–200, 2012.
[68]C. T. J. Low, F. C. Walsh, M. H. Chakrabarti, M. A. Hashim and M. A. Hussain, “Electrochemical approaches to the production of graphene flakes and their potential applications”, Carbon, 54, 1-21, 2013.
[69]S. S. Kurva and Y. Mahajan, “Challenges and opportunities for the mass production of high quality graphene: an analysis of worldwide patents”, Nanotech Insights, 3, 6-19, 2012.
[70]H. Alcalde, J. de la Fuente, B. Kamp and A. Zurutuza, “Market Uptake Potential of Graphene as a Disruptive Material”, Proceedings of the IEEE, 101 (7), 1793-1800, 2013.
[71]A. McWilliams, “Graphene: Technologies, applications and markets”, BCC Research, Wellesley, MA, USA, AVM075B, Jul. 2012.
[72]R. Haupt, M. Kloyer and M. Lange, “Patent indicators for the technology life cycle development”, Research Policy, 36 (3), 387–398, 2007.
[73]N. Corrocher, F. Malerba and F. Montobbio, “Schumpeterian patterns of innovative activity in the ICT field”, Research Policy, 36 (3), 418–432, 2007.
[74]A. Bonaccorsi and G. Thoma, “Institutional complementarity and inventive performance in nanoscience and technology”, Research Policy, 36 (6), 813–831, 2007.
[75]V. K. Gupta and N. B. Pangannaya, “Carbon nanotubes: Bibliometric analysis of patents”, World Patent Information, 22 (3), 185–189, 2000.
[76]A. Hullmann, “Measuring and assessing the development of nanotechnology”, Scientometrics, 70 (3), 739–758, 2007.
[77]S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes”, Nature Nanotechnology, 4 (4), 217-224, 2009.
[78]Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk,J. R. Potts and R. S. Ruoff, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications”, Advanced Materials, 22 (35), 3906-3924, 2010.
[79]S. N. Baker and G. A. Baker, “Luminescent carbon nanodots: emergent nanolights”, Angewandte Chemie International Edition, 49 (38), 6726-6744, 2010.
[80]K. R. Paton, E. Varrla, C. Backes, R. J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O. M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S. E. O’Brien, E. K. McGuire, B. M. Sanchez, G. S. Duesberg, N. McEvoy, T. J. Pennycook, C. Downing, A. Crossley, V. Nicolosi and J. N. Coleman, “Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids”, Nature Materials, 13 (6), 624-630, 2014.
[81]C. Knieke, A. Berger, M. Voigt, R. N. K. Taylor, J. Röhrl and W. Peukert, “Scalable production of graphene sheets by mechanical delamination”, Carbon, 48 (11), 3196-3204, 2010.
[82]P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim and K. S. Novoselov, “Graphene-Based Liquid Crystal Device”, Nano Letters, 8 (6), 1704-1708, 2008.
[83]Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and J. N. Coleman, “High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite”, Nature Nanotechnology, 3 (9), 563-568, 2008.
[84]C. E. Hamilton, J. R. Lomeda, Z. Sun, J. M. Tour and A. R. Barron, “High-yield organic dispersions of unfunctionalized graphene”, Nano Letters, 9 (10), 3460–3462, 2009.
[85]A. A Green and M. C. Hersam, “Solution Phase Production of Graphene with Controlled Thickness Via Density Differentiation”, Nano Letters, 9 (12), 4031-4036, 2009.
[86]X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang and H. Dai, “Highly Conducting Graphene Sheets and Langmuir- Blodgett Films”, Nature Nanotechnology, 3 (9), 538-542, 2008.
[87]B. C. Brodie, “Sur le poids atomique du graphite“, Annales de Chimie et de Physique, 59, 466-72, 1860.
[88]L. Staudenmaier, “Verfahren zur Darstellung der Graphitsäure“, Berichte der Deutschen Chemischen Gesellschaft, 31 (2), 1481-1487, 1898.
[89]W. S. Hummers Jr. and R. E. Offeman, “Preparation of graphite oxide”, Journal of the American Chemical Society, 80 (6), 1339-1339, 1958.
[90]A. Lerf, H. He, M. Forster and J. Klinowski, “Structure of graphite oxide revisited”, The Journal of Physical Chemistry B, 102 (23), 4477-4482, 1998.
[91]H. He, J. Klinowski, M. Forster and A. Lerf, “A new structure model of graphite oxide”, Chemical Physics Letters, 287 (1-2), 53-56, 1998.
[92]A. Lerf, A. Buchsteiner, J. Pieper, S. Schöttl, I. Dekany,T. Szabo and H. P. Boehm, “Hydration behaviour and dynamics of water molecules in graphite oxide”, Journal of Physics and Chemistry of Solids, 67 (5-6), 1106-1110, 2006.
[93]S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”, Carbon, 45 (7), 1558-1565, 2007.
[94]D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen and R. S. Ruoff, “Preparation and Characterization of graphene oxide paper”, Nature, 448 (7152), 457-460, 2007.
[95]C. Nethravathi and M. Rajamathi, “Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide”, Carbon, 46 (14), 1994-1998, 2008.
[96]G. Wang, B. Wang, J. Park, J. Yang, X. Shen and J. Yao, “Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method”, Carbon, 47 (1), 68-72, 2009.
[97]H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville and I. A. Aksay, “Functionalized single graphene sheets derived from splitting graphite oxide”, The Journal of Physical Chemistry B, 110 (17), 8535-8539, 2006.
[98]M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud'homme and I. A. Aksay, “Single sheet functionalized graphene by oxidation and thermal expansion of graphite”, Chemistry of Materials, 19 (18), 4396-4404, 2007.
[99]N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang and J. Chen, “One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid- Functionalized Graphene Sheets Directly from Graphite”, Advanced Functional Materials, 18 (10), 1518-1525, 2008.
[100]G. Wang, B. Wang, J. Park, Y. Wang, B. Sun and J. Yao, “Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation”, Carbon, 47 (14), 3242-3246, 2009.
[101]C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov and L. J. Li, “High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation”, ACS Nano, 5 (3), 2332-2339, 2011.
[102]M. Choucair, P. Thordarson and J. A. Stride, “Gram-scale production of graphene based on solvothermal synthesis and sonication”, Nature Nanotechnology, 4 (1). 30-33, 2009.
[103]L. Zhi and K. Müllen, “A bottom-up approach from molecular nanographenes to unconventional carbon materials”, Journal of Materials Chemistry, 18 (13), 1472-1484, 2008.
[104]C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics”, The Journal of Physical Chemistry B, 108 (52), 19912-19916, 2004.
[105]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene”, Science, 312 (5777), 1191-1196, 2006.
[106]K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature, 457 (7230), 706-710, 2009.
[107]A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition”, Nano Letters, 9 (1), 30-35, 2009.
[108]Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu and J. M. Tour, “Growth of graphene from solid carbon sources”, Nature, 468 (7323), 549-552, 2010.
[109]K. S. Subrahmanyam, S. R. C. Vivekchand, A. Govindaraj and C. N. R. Rao, “A study of graphenes prepared by different methods: characterization, properties and solubilization”, Journal of Materials Chemistry, 18 (13), 1517-1523, 2008.
[110]O. E. Andersson, B. L. V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y. Kaburagi, M. Yoshikawa and S. Bandow, “Structure and electronic properties of graphite nanoparticles”, Physical Review B, 58 (24), 16387-16395, 1998.
[111]Y. B. Tang, C. S. Lee, Z. H. Chen, G. D. Yuan, Z. H. Kang, L. B. Luo, H. S. Song, Y. Liu, Z. B. He, W. J. Zhang, I. Bello and S. T. Lee, “High-quality graphene via a facile quenching method for field-effect transistors”, Nano Letters, 9 (4), 1374-1377, 2009.
[112]N. W. Pu, C. A. Wang, Y. Sung, Y. M. Liu and M. D. Ger, “Production of few-layer graphene by supercritical CO2 exfoliation of graphite”, Materials Letters, 63 (23), 1987-1989, 2009.
[113]D. Rangappa, K. Sone, M. Wang, U. K. Gautam, D. Golberg, H. Itoh, M. Ichihara and I. Honma, “Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation”, Chemistry-A European Journal, 16 (22), 6488-6494, 2010.
[114]C. Liu, G. Hu and H. Gao, “Preparation of few-layer and single-layer graphene by exfoliation of expandable graphite in supercritical N, N- dimethylformamide”, The Journal of Supercritical Fluids, 63, 99-104, 2012.
[115]J. H. Jang, D. Rangappa, Y. U. Kwon and I. Honma, “Direct preparation of 1-PSA modified graphene nanosheets by supercritical fluidic exfoliation and its electrochemical properties”, Journal of Materials Chemistry, 21 (10), 3462-3466, 2011.
[116]A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects”, Solid State Communications, 143 (1-2), 47-57, 2007.