跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉文獻
Wen-Hsien Liu
論文名稱: 提升P型Al0.5Ga0.5N歐姆接觸電極的導電性及反射率
Enhancing Conductance and Reflectivity of the Ohmic Contact to P-type Al0.5Ga0.5N
指導教授: 賴昆佑
Kun-Yu Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 57
中文關鍵詞: P 型氮化物
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • P型氮化物半導體大多以鎳金(Ni/Au)作為歐姆接觸電極。對覆晶型(Flip-Chip)深紫外(deep utralviolet, DUV, 波長 ≤ 290 nm) LED來說,金在DUV波段的反射率不到30%,嚴重犧牲元件的光萃取效率。為了解決此問題,我們在DUV LED的P型電極上需克服兩大難題:(1) 提升金屬電極在DUV波段的反射率;(2)降低P型氮化鋁鎵(Al0.5Ga0.5N)表面的接觸電阻。
    在本研究中,我們以Ni/Al/Ti/Au取代Ni/Au。我們利用高真空電子束暨熱阻式蒸鍍系統 (E-gun/Thermal),在P型Al0.5Ga0.5N磊晶層上蒸鍍Ni/Al/Ti/Au,再分析退火溫度對Ni/Al/Ti/Au接觸電阻的影響。我們發現,550℃的退火溫度可將接觸電阻及片電阻分別從2.81x101 ohm-cm2及9.41x108 ohm/sq,降低至3.05x10-2 ohm-cm2及8.79x105 ohm/sq。在反射率方面,Ni/Al/Ti/Au在280 nm的反射率可達57%,遠高於Ni/Au的24%。雖然Ni/Al/Ti/Au的導電度有待改進,但由於Al的高UV反射率,可以補償其在電性上的損失。未來,我們將持續優化Ni/Al/Ti/Au的製程條件,希望能有效提升DUV LED的發光效率。


    Deep ultraviolet (DUV) LEDs traditionally employ Ni/Au as the ohmic contact to p-type AlGaN. However, for flip-chip devices, the reflectivity of gold at DUV wavelengths is below 30%, severely sacrificing the light extraction efficiency of DUV LEDs. To address the issues, there are two challenges to overcome with the p-type ohmic contact: (1) Increasing reflectivity in the DUV regime; (2) Decreasing the contact resistance on p-type Al0.5Ga0.5N.
    In this study, Ni/Au is replaced with Ni/Al/Ti/Au as the ohmic contact to p-type Al0.5Ga0.5N. The Al-based alloy was deposited by a high-vacuum electron-beam/thermal evaporation. The ohmic contact structure is then annealed at varied temperatures, with the attempt to reduce contact/sheet resistance. It is found that the annealing at 550 °C effectively reduces the specific contact resistance and the sheet resistance from 2.81x101 ohm-cm2 and 9.418x108 ohm/sq to 3.057x10-2 ohm-cm2 and 8.791x105 ohm/sq, respectively. For optical characterization, the reflectance of Ni/Al/Ti/Au at 280 nm reaches 57 %, significantly higher than that (24%) attained with Ni/Au. Although the conductivity of Ni/Al/Ti/Au on p-type Al0.5Ga0.5N remains to be improved, the high UV reflectivity is expected to compensate the loss in electrical performance. In the future, the fabrication of Ni/Al/Ti/Au will be optimized to enhance the external quantum efficiency of DUV LEDs.

    論文摘要................................................................................................................Ⅰ Abstract.................................................................................................................Ⅱ 致謝.....................................................................................................................Ⅲ 目錄.....................................................................................................................Ⅳ 圖目錄.................................................................................................................Ⅵ 表目錄..............................................................................................................Ⅷ 第一章 緒論 1-1前言……………………………………………………………………….1 1-2鋁電極應用深紫外光波長LED的優勢…………………...……….…...3 1-3研究動機………………………………………………………………….8 1-4論文架構………………………………………………………………...11 第二章 實驗原理、方法與儀器 2-1製程步驟………………………………………………………………...12 2-2 Transfer Length Method量測原理……………………………………...19 2-3紫外線/可見光分光光譜儀檢測………………………………………..21 2-4霍爾量測原理…………………………………………………………...23 第三章 結果與討論 3-1金屬電極對電阻值的影響……………………………………………...26 3-2反射率在入射光280nm波長的比較…….……….…….….………..….34 3-3利用退火降低接觸電阻與片電阻……………………………………...36 第四章 結論與未來展望 4-1結論……………………………………………………………………...42 4-2未來展望………………………………………………………………...43 參考文獻……………………………………………………………………….44

    [1] https://club.1688.com/article/55768490.html.
    [2] Masahiro, A. et al. Growth of flat p-GaN contact layer by pulse flow method for high light- extraction AlGaN deep-UV LEDs with Al-based electrode. Phys. Status Solidi C 9, No. 3–4 (2012).
    [3] Hideki, H. J. Appl. Phys. 97, 091101 1-19 (2005). (Focused Review: Invited Paper).
    [4] Hideki, H., Tohru, Y., Norimichi, N., Tomoaki, O and Norihiko, K. 231–261nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl. Phys. Lett 91, 071901 (2007).
    [5] Hideki, H., Norimichi, N and Norihiko, K. 222 nm Deep-Ultraviolet AlGaN Quantum Well Light-Emitting Diode with Vertical Emission Properties. Appl. Phys. Express 3, 032102 (2010).
    [6] Hideki, H. et al. 222–282 nm AlGaN and InAlGaN‐based deep‐UV LEDs fabricated on high‐quality AlN on sapphire. Phys. Status Solidi A 206, 1176-1182 (2009).
    [7] Hideki, H., Noritoshi, M., Sachie, F., Shiro, T., and Norihiko, K. Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes. Jpn. J. Appl. Phys. 53, 100209 (2014).
    [8] Noritoshi, M and Hideki, H. Realization of high-efficiency deep-UV LEDs using transparent p-AlGaN contact layer. Phys. Status Solidi C 10, No. 11 (2013).
    [9] Noritoshi, M., Hideki, H. Improvement of Light-Extraction Efficiency of Deep-UV LEDs using Transparent p-AlGaN Contact Layer. Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). (2013).
    [10] Takayoshi, T. et al. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275nm achieved by improving light-extraction efficiency. Appl. Phys. Express 10, 031002 (2017).
    [11] Yukio, N., Masahiko, S., Takahiko, S., Takao, Y., and Takashi, M . Successful fabrication of white light emitting diodes by using extremely high external quantum efficiency blue chips. phys. stat. sol. (a) 205, No. 5 (2008).
    [12] Bass, M. Handbook of Optics. ISBN vol. 2 (2nd ed.), McGraw-Hill 0070479747 (1994).
    [13] https://myweb.ntut.edu.tw/~wwwemo/instrument_manual/ultraviolet.htm.
    [14] S. R. Lee. et al. The band-gap bowing of AlxGa1-xN alloys. Appl. Phys. Lett Vol. 74, No. 22, 31 May (1999).

    QR CODE
    :::